Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Majewski, P" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Explicit form of the “modified point mass trajectory model” for the use in Fire Control Systems
Autorzy:
Baranowski, L.
Majewski, P.
Szymonik, J.
Powiązania:
https://bibliotekanauki.pl/articles/200333.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ballistics
equations of motion
projectile path
modified point mass trajectory model
MPMTM
projectile deflection
Opis:
The main objective of this article is to obtain equations of motion of the spin–stabilized projectile in the presence of non–constant wind. Introducing models allowing utilization of inhomogeneous wind is dictated by new possibilities created by the use of e.g. lidars in the Fire Control Systems (FCS). Constant feed of wind data can replace meteorological messages, increasing the FCS effectiveness. Article contains results of projectile flight simulations which indicate the positive effect that the derived explicit form of the model has when considering software development for modern Fire Control Systems.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2020, 68, 5; 1167-1175
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
35 mm ammunition’s trajectory model identification based on firing tables
Autorzy:
Baranowski, L.
Gadomski, B.
Majewski, P.
Szymonik, J.
Powiązania:
https://bibliotekanauki.pl/articles/200598.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
identification
exterior ballistics
equations of projectile motion
curve fitting
drag coefficient
identyfikacja
ruch pocisku
współczynnik oporu
Opis:
The article presents a procedure designed for identification of projectile’s trajectory model through aerodynamic coefficients estimation. The identification process is based on firing tables artificially prepared (firing tables prepared using mathematical flight model for the projectile instead of trajectories recorded on field tests) with the use of modified point–mass and rigid body trajectory models. All the necessary data, including physical parameters of the projectile and its aerodynamic characteristics are provided. The detailed results of estimation of chosen aerodynamic coefficients are presented in both visual and tabular form. The main purpose of this paper is to establish the minimum number of trajectories (as characterized in firing tables), and the permissible error of initial parameters being passed to the mathematical model that would allow the correct identification of projectile’s trajectory model.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 5; 635-643
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Explicit “ballistic M-model”: a refinement of the implicit “modified point mass trajectory model”
Autorzy:
Baranowski, L.
Gadomski, B.
Majewski, P.
Szymonik, J.
Powiązania:
https://bibliotekanauki.pl/articles/202089.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ballistics
equations of motion
projectile path
modified point mass trajectory model
MPMTM
projectile deflection
balistyka
równania ruchu
lot pocisku
Opis:
Various models of a projectile in a resisting medium are used. Some are very simple, like the “point mass trajectory model”, others, like the “rigid body trajectory model”, are complex and hard to use, especially in Fire Control Systems due to the fact of numeric complexity and an excess of less important corrections. There exist intermediate ones - e.g. the “modified point mass trajectory model”, which unfortunately is given by an implicitly defined differential equation as Sec. 1 discusses. The main objective of this paper is to present a way to reformulate the model obtaining an easy to solve explicit system having a reasonable complexity yet not being parameter-overloaded. The final form of the M-model, after being carefully derived in Sec. 2, is presented in Subsec. 2.5.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2016, 64, 1; 81-89
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies