Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Cheng Li." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Anonymous traffic classification based on three-dimensional Markov image and deep learning
Autorzy:
Tang, Xin
Li, Huanzhou
Zhang, Jian
Tang, Zhangguo
Wang, Han
Cai, Cheng
Powiązania:
https://bibliotekanauki.pl/articles/27311448.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
anonymous network
traffic classification
three-dimensional Markov image
output self-attention
deep learning
sieć anonimowa
klasyfikacja ruchu
trójwymiarowy obraz Markowa
samouwaga wyjściowa
uczenie głębokie
Opis:
Illegal elements use the characteristics of an anonymous network hidden service mechanism to build a dark network and conduct various illegal activities, which brings a serious challenge to network security. The existing anonymous traffic classification methods suffer from cumbersome feature selection and difficult feature information extraction, resulting in low accuracy of classification. To solve this problem, a classification method based on three-dimensional Markov images and output self-attention convolutional neural network is proposed. This method first divides and cleans anonymous traffic data packets according to sessions, then converts the cleaned traffic data into three-dimensional Markov images according to the transition probability matrix of bytes, and finally inputs the images to the output self-attention convolution neural network to train the model and perform classification. The experimental results show that the classification accuracy and F1-score of the proposed method for Tor, I2P, Freenet, and ZeroNet can exceed 98.5%, and the average classification accuracy and F1-score for 8 kinds of user behaviors of each type of anonymous traffic can reach 93.7%. The proposed method significantly improves the classification effect of anonymous traffic compared with the existing methods.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 4; art. no. e145676
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A BIM technology-based underwater structure damage identification and management method
Autorzy:
Li, Xiaofei
Su, Rongrong
Cheng, Peng
Sun, Heming
Meng, Qinghang
Song, Taiyi
Wei, Mengpu
Zhang, Chen
Powiązania:
https://bibliotekanauki.pl/articles/2204531.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
building information modeling
underwater structural disease
damage identification
deep learning
modelowanie informacji o budynku
identyfikacja uszkodzeń
uczenie głębokie
uszkodzenie podwodnej konstrukcji
Opis:
With the continuous development of bridge technology, the condition assessment of large bridges has gradually attracted attention. Structural Health Monitoring (SHM) technology provides valuable information about a structure's existing health, keeping it safe and uninterrupted use under various operating conditions by mitigating risks and hazards on time. At the same time, the problem of bridge underwater structure disease is becoming more obvious, affecting the safe operation of the bridge structure. It is necessary to test the bridge’s underwater structure. This paper develops a bridge underwater structure health monitoring system by combining building information modeling (BIM) and an underwater structure damage algorithm. This paper is verified by multiple image recognition networks, and compared with the advantages of different networks, the YOLOV4 network is used as the main body to improve, and a lightweight convolutional neural network (Lite-yolov4) is built. At the same time, the accuracy of disease identification and the performance of each network are tested in various experimental environments, and the reliability of the underwater structure detection link is verified.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 2; art. no. e144602
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies