Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural, S." wg kryterium: Wszystkie pola


Wyświetlanie 1-8 z 8
Tytuł:
Deep learning versus classical neural approach to mammogram recognition
Autorzy:
Kurek, J.
Świderski, B.
Osowski, S.
Kruk, M.
Barhoumi, W.
Powiązania:
https://bibliotekanauki.pl/articles/200919.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
convolutional neural networks
breast cancer diagnosis
mammogram recognition
diagnostic features
splotowe sieci neuronowe
diagnostyka raka piersi
rozpoznawanie
mammografia
cechy diagnostyczne
Opis:
Automatic recognition of mammographic images in breast cancer is a complex issue due to the confusing appearance of some perfectly normal tissues which look like masses. The existing computer-aided systems suffer from non-satisfactory accuracy of cancer detection. This paper addresses this problem and proposes two alternative techniques of mammogram recognition: the application of a variety of methods for definition of numerical image descriptors in combination with an efficient SVM classifier (so-called classical approach) and application of deep learning in the form of convolutional neural networks, enhanced with additional transformations of input mammographic images. The key point of the first approach is defining the proper numerical image descriptors and selecting the set which is the most class discriminative. To achieve better performance of the classifier, many image descriptors were defined by means of applying different characterization of the images: Hilbert curve representation, Kolmogorov-Smirnov statistics, the maximum subregion principle, percolation theory, fractal texture descriptors as well as application of wavelet and wavelet packets. Thanks to them, better description of the basic image properties has been obtained. In the case of deep learning, the features are automatically extracted as part of convolutional neural network learning. To get better quality of results, additional representations of mammograms, in the form of nonnegative matrix factorization and the self-similarity principle, have been proposed. The methods applied were evaluated based on a large database composed of 10,168 regions of interest in mammographic images taken from the DDSM database. Experimental results prove the advantage of deep learning over traditional approach to image recognition. Our best average accuracy in recognizing abnormal cases (malignant plus benign versus healthy) was 85.83%, with sensitivity of 82.82%, specificity of 86.59% and AUC = 0.919. These results are among the best for this massive database.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 831-840
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial neural networks in mechanical surface enhancement technique for the prediction of surface roughness and microhardness of magnesium alloy
Autorzy:
Cagan, S. C.
Maci, M.
Buldum, M. M.
Maci, C.
Powiązania:
https://bibliotekanauki.pl/articles/201157.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial neural network
prediction
ball burnishing
magnesium alloys
AZ91D
Opis:
The artificial neural network method (ANN) is widely used in both modeling and optimization of manufacturing processes. Determination of optimum processing parameters plays a key role as far as both cost and time are concerned within the manufacturing sector. The burnishing process is simple, easy and cost-effective, and thus it is more common to replace other surface finishing processes in the manufacturing sector. This study investigates the effect of burnishing parameters such as the number of passes, burnishing force, burnishing speed and feed rate on the surface roughness and microhardness of an AZ91D magnesium alloy using different artificial neural network models (i.e. the function fitting neural network (FITNET), generalized regression neural network (GRNN), cascade-forward neural network (CFNN) and feed-forward neural network (FFNN). A total of 1440 different estimates were made by means of ANN methods using different parameters. The best average performance results for surface roughness and microhardness are obtained by the FITNET model (i.e. mean square error (MSE): 0.00060608, mean absolute error (MAE): 0.01556013, multiple correlation coefficient (R): 0.99944545), using the Bayesian regularization process (trainbr)). The FITNET model is followed by the FFNN (i.e. MAE: 0.01707086, MSE: 0.00072907, R: 0.99932069) and CFNN (i.e. MAE: 0.01759166, MSE: 0.00080154, R: 0.99924845) models with very small differences, respectively. The GRNN model has noted worse estimation results (i.e. MSE: 0.00198232, MAE: 0.02973829, R: 0.99900783) as compared with the other models. As a result, MSE, MAE and R values show that it is possible to predict the surface roughness and microhardness results of the burnishing process with high accuracy using ANN models.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 4; 729-739
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental investigation and modelling of Friction Stir Processing of cast aluminium alloy AlSi9Mg
Autorzy:
Węglowski, M. S.
Dymek, S.
Hamilton, C. B.
Powiązania:
https://bibliotekanauki.pl/articles/200339.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
friction stir processing
aluminum alloys
numerical modelling
neural networks
microstructure
Opis:
Friction Stir Processing (FSP) is a novel solid state processing technique which can be used for microstructural modification of surface layers in metallic materials. This paper analyzes the effects of FSP process parameters on spindle torque acting on the tool and on the tool temperature. It has been shown that an increase in the rotational speed brings about a decrease in the torque and an increase of temperature. For temperature estimation in the stir zone a numerical model was applied, while for predicting a relationship between the spindle torque acting on the tool, rotational and travelling speeds and the down force, the artificial neural networks approach was employed. Light and electron (scanning and transmission) microscopy investigation showed that the FSP process reduces porosity and produces a more uniform distribution of second-phase particles.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2013, 61, 4; 893-904
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Local dynamic integration of ensemble in prediction of time series
Autorzy:
Osowski, S.
Siwek, K.
Powiązania:
https://bibliotekanauki.pl/articles/201557.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
neural networks
ensemble of predictors
dynamic integration
time series prediction
sieci neuronowe
zespół predyktorów
dynamiczna integracja
Opis:
The paper presents local dynamic approach to integration of an ensemble of predictors. The classical fusing of many predictor results takes into account all units and takes the weighted average of the results of all units forming the ensemble. This paper proposes different approach. The prediction of time series for the next day is done here by only one member of an ensemble, which was the best in the learning stage for the input vector, closest to the input data actually applied. Thanks to such arrangement we avoid the situation in which the worst unit reduces the accuracy of the whole ensemble. This way we obtain an increased level of statistical forecasting accuracy, since each task is performed by the best suited predictor. Moreover, such arrangement of integration allows for using units of very different quality without decreasing the quality of final prediction. The numerical experiments performed for forecasting the next input, the average PM10 pollution and forecasting the 24-element vector of hourly load of the power system have confirmed the superiority of the presented approach. All quality measures of forecast have been significantly improved.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 3; 517-525
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial neural network based tool wear estimation on dry hard turning processes of AISI4140 steel using coated carbide tool
Autorzy:
Rajeev, D.
Dinakaran, D.
Singh, S. C. E.
Powiązania:
https://bibliotekanauki.pl/articles/200672.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hard turning
coated carbide
cutting force
vibration
ANN
twarde toczenie
siła cięcia
wibracja
Opis:
Nowadays, finishing operation in hardened steel parts which have wide industrial applications is done by hard turning. Cubic boron nitride (CBN) inserts, which are expensive, are used for hard turning. The cheaper coated carbide tool is seen as a substitute for CBN inserts in the hardness range (45–55 HRC). However, tool wear in a coated carbide tool during hard turning is a significant factor that influences the tolerance of machined surface. An online tool wear estimation system is essential for maintaining the surface quality and minimizing the manufacturing cost. In this investigation, the cutting tool wear estimation using artificial neural network (ANN) is proposed. AISI4140 steel hardened to 47 HRC is used as a work piece and a coated carbide tool is the cutting tool. Experimentation is based on full factorial design (FFD) as per design of experiments. The variations in cutting forces and vibrations are measured during the experimentation. Based on the process parameters and measured parameters an ANN-based tool wear estimator is developed. The wear outputs from the ANN model are then tested. It was observed that as the model using ANN provided quite satisfactory results, and that it can be used for online tool wear estimation.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2017, 65, 4; 553-559
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigating the FSW parameter’s role on microstructure and mechanical properties of welding AZ31B–AA8110 alloy
Autorzy:
Dharmalingam, S.
Lenin, K.
Srinivasan, D.
Powiązania:
https://bibliotekanauki.pl/articles/2173552.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
AA8011–AZ31B alloy
FSW
friction stir welding
ANN-GA
artificial neural network based genetic algorithm
mechanical properties
stop AA8011–AZ31B
właściwości mechaniczne
zgrzewanie tarciowe z mieszaniem materiału zgorzeliny
algorytm genetyczny
sztuczna sieć neuronowa
Opis:
The influence of friction stir welding (FSW) in automotive applications is significantly high in recent days as it can boast beneficial factors such as less distortion, minimized residual stresses and enhanced mechanical properties. Since there is no emission of harmful gases, it is regarded as a green technology, which has an energy efficient clean environmental solid-state welding process. In this research work, the FSW technique is employed to weld the AA8011–AZ31B alloy. In addition, the L16 orthogonal array is employed to conduct the experiments. The influences of parameters on the factors such as microstructure, hardness and tensile strength are determined. Microstructure images have shown tunnel formation at low rotational speed and vortex occurrence at high rotational speed. To attain high quality welding, the process parameters are optimized by using a hybrid method called an artificial neural network based genetic algorithm (ANN-GA). The confirmation tests are carried out under optimal welding conditions. The results obtained are highly reliable, which exhibits the optimal features of the hybrid method.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 1; e140098, 1--7
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Developing automatic recognition system of drill wear in standard laminated chipboard drilling process
Autorzy:
Kurek, J.
Kruk, M.
Osowski, S.
Hoser, P.
Wieczorek, G.
Jegorowa, A.
Górski, J.
Wilkowski, J.
Śmietańska, K.
Kossakowska, J.
Powiązania:
https://bibliotekanauki.pl/articles/200766.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
diagnostic expert systems
neural networks
wavelet packets
wear monitoring
diagnostyczny system ekspercki
sieci neuronowe
pakiety falkowe
monitorowanie zużycia
Opis:
The paper presents an automatic approach to recognition of the drill condition in a standard laminated chipboard drilling process. The state of the drill is classified into two classes: “useful” (sharp enough) and “useless” (worn out). The case “useless” indicates symptoms of excessive drill wear, unsatisfactory from the point of view of furniture processing quality. On the other hand the “useful” state identifies tools which are still able to drill holes acceptable due to the required processing quality. The main problem in this task is to choose an appropriate set of diagnostic features (variables), based on which the recognition of drill state (“useful” versus “useless”) can be made. The features have been generated based on 5 registered signals: feed force, cutting torque, noise, vibration and acoustic emission. Different statistical parameters describing these signals and also their Fourier and wavelet representations have been used for defining the features. Sequential feature selection is applied to detect the most class discriminative set of features. The final step of recognition is done by using three types of classifiers, including support vector machine, ensemble of decision trees and random forest. Six standard drills of 12 mm diameter with tungsten carbide tips were used in experiments. The results have confirmed good quality of the proposed diagnostic system.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2016, 64, 3; 633-640
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lung cancer detection using an integration of fuzzy K-Means clustering and deep learning techniques for CT lung images
Autorzy:
Prasad, J. Maruthi Nagendra
Chakravarty, S.
Krishna, M. Vamsi
Powiązania:
https://bibliotekanauki.pl/articles/2173683.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuzzy K-means
artificial neural networks
SVM
support vector machine
crow search optimization algorithm
algorytm rozmytych k-średnich
sztuczne sieci neuronowe
maszyna wektorów wspierających
algorytm optymalizacji wyszukiwania kruków
Opis:
Computer aided detection systems are used for the provision of second opinion during lung cancer diagnosis. For early-stage detection and treatment false positive reduction stage also plays a vital role. The main motive of this research is to propose a method for lung cancer segmentation. In recent years, lung cancer detection and segmentation of tumors is considered one of the most important steps in the surgical planning and medication preparations. It is very difficult for the researchers to detect the tumor area from the CT (computed tomography) images. The proposed system segments lungs and classify the images into normal and abnormal and consists of two phases, The first phase will be made up of various stages like pre-processing, feature extraction, feature selection, classification and finally, segmentation of the tumor. Input CT image is sent through the pre-processing phase where noise removal will be taken care of and then texture features are extracted from the pre-processed image, and in the next stage features will be selected by making use of crow search optimization algorithm, later artificial neural network is used for the classification of the normal lung images from abnormal images. Finally, abnormal images will be processed through the fuzzy K-means algorithm for segmenting the tumors separately. In the second phase, SVM classifier is used for the reduction of false positives. The proposed system delivers accuracy of 96%, 100% specificity and sensitivity of 99% and it reduces false positives. Experimental results shows that the system outperforms many other systems in the literature in terms of sensitivity, specificity, and accuracy. There is a great tradeoff between effectiveness and efficiency and the proposed system also saves computation time. The work shows that the proposed system which is formed by the integration of fuzzy K-means clustering and deep learning technique is simple yet powerful and was effective in reducing false positives and segments tumors and perform classification and delivers better performance when compared to other strategies in the literature, and this system is giving accurate decision when compared to human doctor’s decision.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 3; art. no. e139006
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies