Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hybrid performance" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
An enhanced performance evaluation of workflow computing and scheduling using hybrid classification approach in the cloud environment
Autorzy:
Tharani, P.
Kalpana, A. M.
Powiązania:
https://bibliotekanauki.pl/articles/2086824.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
cloud
workflow scheduling
machine learning
CNN
AlexNet
chmura
planowanie przepływu pracy
nauczanie maszynowe
Opis:
Workflow scheduling is the major problem in cloud computing consists of a set of interdependent tasks which is used to solve the various scientific and healthcare issues. In this research work, the cloud based workflow scheduling between different tasks in medical imaging datasets using Machine Learning (ML) and Deep Learning (DL) methods (hybrid classification approach) is proposed for healthcare applications. The main objective of this research work is to develop a system which is used for both workflow computing and scheduling in order to minimize the makespan, execution cost and to segment the cancer region in the classified abnormal images. The workflow computing is performed using different Machine Learning classifiers and the workflow scheduling is carried out using Deep Learning algorithm. The conventional AlexNet Convolutional Neural Networks (CNN) architecture is modified and used for workflow scheduling between different tasks in order to improve the accuracy level. The AlexNet architecture is analyzed and tested on different cloud services Amazon Elastic Compute Cloud- EC2 and Amazon Lightsail with respect to Makespan (MS) and Execution Cost (EC).
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 4; e137728, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear PID controller parameter optimization using modified hybrid artificial bee colony algorithm for continuous stirred tank reactor
Autorzy:
Pugazhenthi, Nedumal
Selvaperumal, S.
Vijayakumar, K.
Powiązania:
https://bibliotekanauki.pl/articles/2128163.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial bee colony
stirred tank reactor
genetic algorithm
nonlinear PID
controller performance measures
sztuczna kolonia pszczół
reaktor zbiornikowy z mieszadłem
algorytm genetyczny
PID nieliniowy
miernik wydajności kontrolera
Opis:
The artificial bee colony (ABC) algorithm is well known and widely used optimization method based on swarm intelligence, and it is inspired by the behavior of honeybees searching for a high amount of nectar from the flower. However, this algorithm has not been exploited sufficiently. This research paper proposes a novel method to analyze the exploration and exploitation of ABC. In ABC, the scout bee searches for a source of random food for exploitation. Along with random search, the scout bee is guided by a modified genetic algorithm approach to locate a food source with a high nectar value. The proposed algorithm is applied for the design of a nonlinear controller for a continuously stirred tank reactor (CSTR). The statistical analysis of the results confirms that the proposed modified hybrid artificial bee colony (HMABC) achieves consistently better performance than the traditional ABC algorithm. The results are compared with conventional ABC and nonlinear PID (NLPID) to show the superiority of the proposed algorithm. The performance of the HMABC algorithm-based controller is competitive with other state-of-the-art meta-heuristic algorithm-based controllers in the literature.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e137348, 1--10
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear PID controller parameter optimization using modified hybrid artificial bee colony algorithm for continuous stirred tank reactor
Autorzy:
Pugazhenthi, Nedumal
Selvaperumal, S.
Vijayakumar, K.
Powiązania:
https://bibliotekanauki.pl/articles/2173628.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial bee colony
stirred tank reactor
genetic algorithm
nonlinear PID
controller performance measures
sztuczna kolonia pszczół
reaktor zbiornikowy z mieszadłem
algorytm genetyczny
PID nieliniowy
miernik wydajności kontrolera
Opis:
The artificial bee colony (ABC) algorithm is well known and widely used optimization method based on swarm intelligence, and it is inspired by the behavior of honeybees searching for a high amount of nectar from the flower. However, this algorithm has not been exploited sufficiently. This research paper proposes a novel method to analyze the exploration and exploitation of ABC. In ABC, the scout bee searches for a source of random food for exploitation. Along with random search, the scout bee is guided by a modified genetic algorithm approach to locate a food source with a high nectar value. The proposed algorithm is applied for the design of a nonlinear controller for a continuously stirred tank reactor (CSTR). The statistical analysis of the results confirms that the proposed modified hybrid artificial bee colony (HMABC) achieves consistently better performance than the traditional ABC algorithm. The results are compared with conventional ABC and nonlinear PID (NLPID) to show the superiority of the proposed algorithm. The performance of the HMABC algorithm-based controller is competitive with other state-of-the-art meta-heuristic algorithm-based controllers in the literature.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e137348
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies