Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "heuristic methods" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Application of heuristic methods to identification of the parameters of discrete-continuous models
Autorzy:
Cekus, Dawid
Kwiatoń, Paweł
Šofer, Michal
Šofer, Pavel
Powiązania:
https://bibliotekanauki.pl/articles/2173518.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
discrete-continuous model
experimental modal analysis
optimalization
identification
vibrations
model dyskretno-ciągły
eksperymentalna analiza modalna
optymalizacja
identyfikacja
wibracje
Opis:
The article presents the process of identifying discrete-continuous models with the use of heuristic algorithms. A stepped cantilever beam was used as an example of a discrete-continuous model. The theoretical model was developed based on the formalism of Lagrange multipliers and the Timoshenko theory. Based on experimental research, the theoretical model was validated and the optimization problem was formulated. Optimizations were made for two algorithms: genetic (GA) and particle swarm (PSO). The minimization of the relative error of the obtained experimental and numerical results was used as the objective function. The performed process of identifying the theoretical model can be used to determine the eigenfrequencies of models without the need to conduct experimental tests. The presented methodology regarding the parameter identification of the beams with the variable cross-sectional area (according to the Timosheno theory) with additional discrete components allows us to solve similar problems without the need to exit complex patterns.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 1; e140150, 1--7
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solving scheduling problems with integrated online sustainability observation using heuristic optimization
Autorzy:
Burduk, Anna
Musiał, Kamil
Balashov, Artem
Batako, Andre
Safonyk, Andrii
Powiązania:
https://bibliotekanauki.pl/articles/2173719.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
production scheduling
sustainable development
genetic algorithm
meta-heuristics
intelligent optimization methods of production systems
tabu search
harmonogramowanie produkcji
zrównoważony rozwój
algorytm genetyczny
przeszukiwanie tabu
metaheurystyki
inteligentne metody optymalizacji systemów produkcyjnych
Opis:
The paper deals with the issue of production scheduling for various types of employees in a large manufacturing company where the decision-making process was based on a human factor and the foreman’s know-how, which was error-prone. Modern production processes are getting more and more complex. A company that wants to be competitive on the market must consider many factors. Relying only on human factors is not efficient at all. The presented work has the objective of developing a new employee scheduling system that might be considered a particular case of the job shop problem from the set of the employee scheduling problems. The Neuro-Tabu Search algorithm and the data gathered by manufacturing sensors and process controls are used to remotely inspect machine condition and sustainability as well as for preventive maintenance. They were used to build production schedules. The construction of the Neuro-Tabu Search algorithm combines the Tabu Search algorithm, one of the most effective methods of constructing heuristic algorithms for scheduling problems, and a self-organizing neural network that further improves the prohibition mechanism of the Tabu Search algorithm. Additionally, in the paper, sustainability with the use of Industry 4.0 is considered. That would make it possible to minimize the costs of employees’ work and the cost of the overall production process. Solving the optimization problem offered by Neuro-Tabu Search algorithm and real-time data shows a new way of production management.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 6; art. no. e143830
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies