Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę ""Sztuczna sieć neuronowa"" wg kryterium: Wszystkie pola


Wyświetlanie 1-6 z 6
Tytuł:
Assessment of wind energy resources using artificial neural networks – case study at Łódź Hills
Autorzy:
Korupczyński, R.
Trajer, J.
Powiązania:
https://bibliotekanauki.pl/articles/199792.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
wind speed
artificial neural network
wind resources
measure-correlate-predict
prędkość wiatru
sztuczna sieć neuronowa
zasoby wiatru
pomiar-korelacja-przewidywanie
Opis:
The aim of this paper is to answer the question: Are the Łódź Hills useful for electrical energy production from wind energy or not? Due to access to short-term data related to wind measurements (the period of 2008 and 2009) from a local meteorological station, the measure – correlate – predict approach have been applied. Long-term (1979‒2016) reference data were obtained from ECWMF ERA-40 Reanalysis. Artificial neural networks were used to calculate predicted wind speed. The obtained average wind speed and wind power density was 4.21 ms–1 and 70 Wm–1, respectively, at 10 m above ground level (5.51 ms–1, 170 Wm–1 at 50 m). From the point of view of Polish wind conditions, Łódź Hills may be considered useful for wind power engineering.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 1; 115-124
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aspect-based sentiment classification model employing whale-optimized adaptive neural network
Autorzy:
Balaganesh, Nallathambi
Muneeswaran, K.
Powiązania:
https://bibliotekanauki.pl/articles/2173622.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
aspect-based sentiment analysis
whale optimization algorithm
artificial neural network
opinion mining
analiza nastrojów oparta na aspektach
algorytm optymalizacji wielorybów
sztuczna sieć neuronowa
eksploracja opinii
Opis:
Nowadays in e-commerce applications, aspect-based sentiment analysis has become vital, and every consumer started focusing on various aspects of the product before making the purchasing decision on online portals like Amazon, Walmart, Alibaba, etc. Hence, the enhancement of sentiment classification considering every aspect of products and services is in the limelight. In this proposed research, an aspect-based sentiment classification model has been developed employing sentiment whale-optimized adaptive neural network (SWOANN) for classifying the sentiment for key aspects of products and services. The accuracy of sentiment classification of the product and services has been improved by the optimal selection of weights of neurons in the proposed model. The promising results are obtained by analyzing the mobile phone review dataset when compared with other existing sentiment classification approaches such as support vector machine (SVM) and artificial neural network (ANN). The proposed work uses key features such as the positive opinion score, negative opinion score, and term frequency-inverse document frequency (TF-IDF) for representing each aspect of products and services, which further improves the overall effectiveness of the classifier. The proposed model can be compatible with any sentiment classification problem of products and services.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e137271
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aspect-based sentiment classification model employing whale-optimized adaptive neural network
Autorzy:
Balaganesh, Nallathambi
Muneeswaran, K.
Powiązania:
https://bibliotekanauki.pl/articles/2128172.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
aspect-based sentiment analysis
whale optimization algorithm
artificial neural network
opinion mining
analiza nastrojów oparta na aspektach
algorytm optymalizacji wielorybów
sztuczna sieć neuronowa
eksploracja opinii
Opis:
Nowadays in e-commerce applications, aspect-based sentiment analysis has become vital, and every consumer started focusing on various aspects of the product before making the purchasing decision on online portals like Amazon, Walmart, Alibaba, etc. Hence, the enhancement of sentiment classification considering every aspect of products and services is in the limelight. In this proposed research, an aspect-based sentiment classification model has been developed employing sentiment whale-optimized adaptive neural network (SWOANN) for classifying the sentiment for key aspects of products and services. The accuracy of sentiment classification of the product and services has been improved by the optimal selection of weights of neurons in the proposed model. The promising results are obtained by analyzing the mobile phone review dataset when compared with other existing sentiment classification approaches such as support vector machine (SVM) and artificial neural network (ANN). The proposed work uses key features such as the positive opinion score, negative opinion score, and term frequency-inverse document frequency (TF-IDF) for representing each aspect of products and services, which further improves the overall effectiveness of the classifier. The proposed model can be compatible with any sentiment classification problem of products and services.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e137271, 1--8
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Power quality management in electrical grid using SCANN controller-based UPQC
Autorzy:
Varadharajan, Balaji
Subramanian, Chitra
Powiązania:
https://bibliotekanauki.pl/articles/2173547.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
SCANN
single comprehensive artificial neural network
UPQC
unified power quality conditioner
total harmonic distortion
particle swarm optimization
POS
sztuczna sieć neuronowa pojedyncza kompleksowa
zunifikowany kondycjoner jakości energii
współczynnik zawartości harmonicznych
optymalizacja roju cząstek
PSO
Opis:
The electrical grid integration takes great attention because of the increasing population in the nonlinear load connected to the power distribution system. This manuscript deals with the power quality issues and mitigations associated with the electrical grid. The proposed single comprehensive artificial neural network (SCANN) controller with unified power quality conditioner (UPQC) is modelled in MATLAB Simulink environment. It provides series and shunt compensation that helps mitigate voltage and current distortion at the end of the distribution system. Initially, four proportional integral (PI) controllers are used to control the UPQC. Later the trained SCANN controller replaces four PI Controllers for better control action. PI and SCANN controllers’ simulation results are compared to find the optimal solutions. A prototype model of SCANN controller is constructed and tested. The test results show that the SCANN based UPQC maintains grid voltage and current magnitude within permissible limits under fluctuating conditions.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 1; e140257, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigating the FSW parameter’s role on microstructure and mechanical properties of welding AZ31B–AA8110 alloy
Autorzy:
Dharmalingam, S.
Lenin, K.
Srinivasan, D.
Powiązania:
https://bibliotekanauki.pl/articles/2173552.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
AA8011–AZ31B alloy
FSW
friction stir welding
ANN-GA
artificial neural network based genetic algorithm
mechanical properties
stop AA8011–AZ31B
właściwości mechaniczne
zgrzewanie tarciowe z mieszaniem materiału zgorzeliny
algorytm genetyczny
sztuczna sieć neuronowa
Opis:
The influence of friction stir welding (FSW) in automotive applications is significantly high in recent days as it can boast beneficial factors such as less distortion, minimized residual stresses and enhanced mechanical properties. Since there is no emission of harmful gases, it is regarded as a green technology, which has an energy efficient clean environmental solid-state welding process. In this research work, the FSW technique is employed to weld the AA8011–AZ31B alloy. In addition, the L16 orthogonal array is employed to conduct the experiments. The influences of parameters on the factors such as microstructure, hardness and tensile strength are determined. Microstructure images have shown tunnel formation at low rotational speed and vortex occurrence at high rotational speed. To attain high quality welding, the process parameters are optimized by using a hybrid method called an artificial neural network based genetic algorithm (ANN-GA). The confirmation tests are carried out under optimal welding conditions. The results obtained are highly reliable, which exhibits the optimal features of the hybrid method.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 1; e140098, 1--7
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robust estimation based nonlinear higher order sliding mode control strategies for PMSG-WECS
Autorzy:
Nazir, Awais
Khan, Safdar Abbas
Khan, Malak Adnan
Alam, Zaheer
Khan, Imran
Irfan, Muhammad
Rehman, Saifur
Nowakowski, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/27311430.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
wind energy conversion systems
WECS
robust control
maximum power point tracking
MPPT
sliding mode control
SMC
super-twisting algorithm
STA
high gain observer
artificial neural network
ANN
function fitting
backstepping
śledzenie maksymalnego punktu mocy
obserwator o dużym wzmocnieniu
sztuczna sieć neuronowa
dopasowanie funkcji
system konwersji energii wiatrowej
sterowanie odporne
sterowanie ślizgowe
algorytm super skręcania
Opis:
The wind energy conversion systems (WECS) suffer from an intermittent nature of source (wind) and the resulting disparity between power generation and electricity demand. Thus, WECS are required to be operated at maximum power point (MPP). This research paper addresses a sophisticated MPP tracking (MPPT) strategy to ensure optimum (maximum) power out of the WECS despite environmental (wind) variations. This study considers a WECS (fixed pitch, 3KW, variable speed) coupled with a permanent magnet synchronous generator (PMSG) and proposes three sliding mode control (SMC) based MPPT schemes, a conventional first order SMC (FOSMC), an integral back-stepping-based SMC (IBSMC) and a super-twisting reachability-based SMC, for maximizing the power output. However, the efficacy of MPPT/control schemes rely on availability of system parameters especially, uncertain/nonlinear dynamics and aerodynamic terms, which are not commonly accessible in practice. As a remedy, an off-line artificial function-fitting neural network (ANN) based on Levenberg-Marquardt algorithm is employed to enhance the performance and robustness of MPPT/control scheme by effectively imitating the uncertain/nonlinear drift terms in the control input pathways. Furthermore, the speed and missing derivative of a generator shaft are determined using a high-gain observer (HGO). Finally, a comparison is made among the stated strategies subjected to stochastic and deterministic wind speed profiles. Extensive MATLAB/Simulink simulations assess the effectiveness of the suggested approaches.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 5; art. no. e147063
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies