Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ławrynowicz, Maria" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Binary and ternary structures of the evolutions in the universe (2×3×2×· · · -world) IV. The entropy description of evolution
Struktury binarne i ternarne w ewolucji wszechświata (´swiat 2 × 3 × 2 × . . . Wymiarowy) IV. Entropiczny opis ewolucji
Autorzy:
Ławrynowicz, Maria
Nowak-Kępczyk, Małgorzata
Suzuki, Osamu
Powiązania:
https://bibliotekanauki.pl/articles/1837639.pdf
Data publikacji:
2021-08-12
Wydawca:
Łódzkie Towarzystwo Naukowe
Tematy:
entropy
random walk
the evolution of the universe
non-commutative Galois theory
entropia
błądzenie losowe
ewolucja wszechświata
nieprzemienna teoria Galois
Opis:
This is the fourth part of the papers which is written under the same title [30, 31, 16]. In the first and second parts, we have seen that binary and ternary structures can describe evolutions of systems, for example, quarks, atoms, galaxies, RNA, DNA and languages. In the third paper, we have given the evolution of languages and shown that it has an intimate connection to that in physics. In this part we shall develop a ”general evolution theory” for the systems with binary and ternary structures at first. Then we will show how evolutionary systems create so called complexity systems as the border of the evolutionary system. We consider the evolution based on the following principle: The principle of evolution (1) Every system in this universe must obey the law of increase of entropy (Boltzmann’s principle) ([35]) (2) Evolutionary systems perform against the Boltzmann principle (Schrödinger’s principle or Bergson’s philosophy) ([3])
Niniejszy artykuł l jest czwartą częścią artykułów napisanych pod tym samym tytułem [30, 31, 33]. W pierwszej i w drugiej części widzieliśmy, że struktury binarne i ternarne mogą opisywać ewolucję systemów, na przykład kwarków, atomów, galaktyk, RNA, DNA i języków. W trzecim artykule przedstawiliśmy ewolucję języków i pokazaliśmy, że ma ona ścisły związek z tą w fizyce. W tej części rozwiniemy najpierw ogólną teorię ewolucji dla systemów o strukturach binarnych i ternarnych. Następnie pokażemy, jak systemy ewolucyjne tworzą tak zwane systemy złożoności jako granicę systemu ewolucyjnego. Rozważamy ewolucję w oparciu o następujące zasady: Zasady ewolucji: (1) Wszystko w tym wszechświecie musi podlegać prawu wzrostu entropii (zasadzie Boltzmanna) ([35]); (2) Systemy ewolucyjne działają wbrew zasadzie Boltzmanna (zasadzie Schrödingera lub filozofii Bergsona) ([3])
Źródło:
Bulletin de la Société des Sciences et des Lettres de Łódź, Série: Recherches sur les déformations; 2020, 70, 1; 43-81
1895-7838
2450-9329
Pojawia się w:
Bulletin de la Société des Sciences et des Lettres de Łódź, Série: Recherches sur les déformations
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies