Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "impact method" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Ocena odporności konstrukcji żelbetowej na działanie wybuchu
Assessment of reinforced concrete structure resistance to blast
Autorzy:
Ruchwa, M.
Powiązania:
https://bibliotekanauki.pl/articles/211205.pdf
Data publikacji:
2010
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
dynamika
odporność udarowa
konstrukcje żelbetowe
metoda elementów skończonych
wybuch
dynamic
impact resistance
reinforced concrete structures
finite elements method
blast load
Opis:
W publikacji przedstawiono sprawdzenie za pomocą analizy numerycznej, jaki wpływ na odporność konstrukcji żelbetowej ma użycie betonu wyższej klasy oraz zastosowanie osłony pochłaniającej część energii fali uderzeniowej. Analiza nawiązuje do znanego z literatury eksperymentu, dotyczącego płyt żelbetowych narażonych na działanie niekontaktowego wybuchu. Płyty różniły się między sobą klasą betonu oraz brakiem lub zastosowaniem dodatkowej osłony pochłaniającej część fali uderzeniowej. Problem rozwiązano Metodą Elementów Skończonych (MES). W poszczególnych wariantach analizy uwzględniono przestrzenny model płyt, nieliniowości geometryczne, sprężysto-plastyczny model betonu ze zniszczeniem, współpracę betonu ze zbrojeniem, warunki brzegowe, opcjonalne występowanie osłon o różnych rozmiarach oraz dynamiczne wymuszenie w postaci ciśnienia fali uderzeniowej. Równania ruchu całkowano metodą różnic centralnych, a narzędziem obliczeniowym był program ABAQUS. Uzyskane po przeprowadzonej serii obliczeń rezultaty dostarczają pewnej wiedzy na temat możliwości podniesienia odporności konstrukcji na działanie wybuchu. W analizie wyników zwrócono uwagę na rozkład stref uszkodzeń konstrukcji, przemieszczenia oraz poziom energii pochłoniętej przez analizowaną konstrukcję i opcjonalnie występującą osłonę.
This paper deals with checking through the numerical analysis what influence on reinforced concrete resistance has concrete of higher class and application of a shield absorbing portion of a shock wave. The analysis refers to an experiment known from literature regarding reinforced concrete slabs exposed to open-air explosion. The slabs differed in concrete class and lack, or use, of an extra shield absorbing portion of the shock wave. The problem was solved by application of the Finite Elements Method. The slab spatial model, geometric nonlinearity, concrete damaged plasticity model, concrete interaction with the reinforcement, boundary conditions, optional application of variable dimension shields and dynamic loading in form of the shock wave pressure were considered in particular analysis variants. The motion equations were being integrated by application of the central-difference method and the calculation tool applied was there ABAQUS software. The results obtained from a series of calculations performed provide some knowledge on a possibility to increase resistance of a structure to blast. Attention was focused, during results analysis, on distribution of the structure damage zones, displacements and level of energy absorbed by the analysed structure and optional shield.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2010, 59, 4; 169-280
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przybliżone modelowanie układu „pojazd szynowy–nawierzchnia–podłoże”
The approximate modelling of a “rail vehicle-railway track-substructure” system
Autorzy:
Lewandrowski, T.
Muzolf, P.
Idczak, W.
Powiązania:
https://bibliotekanauki.pl/articles/209043.pdf
Data publikacji:
2017
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
metody numeryczne
metoda różnic skończonych
nawierzchnia kolejowa
współczynnik dynamiczności obciążenia
numerical methods
finite difference method
railway infrastructure
dynamic impact factor
Opis:
W artykule analizowano układ pojazd szynowy–nawierzchnia kolejowa–podłoże gruntowe jako belki Bernoulliego-Eulera na podłożu jednowarstwowym. Rozpatrywano następujące przypadki obciążeń konstrukcji nawierzchni kolejowej: a) statyczne obciążenie nawierzchni kolejowej pojazdem szynowym, b) pojazd porusza się ze stałą prędkością. W konsekwencji otrzymano równanie różniczkowe czwartego rzędu opisujące równanie linii ugięcia tak zamodelowanego układu. Dane materiałowe oraz parametry eksploatacyjne zostały określone poprzez poszczególne składniki równania. Do jego rozwiązania wykorzystano metodę różnic skończonych. Opisana została istota metody oraz podstawowe zagadnienia z nią związane takie jak: dobór kroku przestrzennego, dobór kroku czasowego, siatka czasowo-przestrzenna oraz numeryczny model obciążenia ruchomego. Celem autorów było określenie przydatności zastosowanej metody numerycznej przy rozwiązywaniu równania różniczkowego opisującego wybrany do analizy model nawierzchni kolejowej. Otrzymane wyniki porównano z wartościami obliczonymi w sposób analityczny. Opracowany uproszczony i sprawdzony model układu pojazd−nawierzchnia−podtorze zostanie wykorzystany w dalszym etapie pracy do analizy różnych rozwiązań technicznych (różne materiały i różne kształty elementów wchodzących w skład nawierzchni charakteryzujące się różnymi stałymi materiałowymi).
A system “railway vehicle–railway track–substructure” was analysed. Rails were modelled as the Bernoulii-Euler beams on an elastic foundation. Two load cases were considered a) static load from the train to the railway track, b) dynamic load from the train moving with the constant velocity. As a result, the fourth-order differential equation was obtained. Both, material data and operating parameters were determined by components of the equation. To solve this equation, the finite difference method was used. This method was described considering such matters as space step, time step, discretization, and moving load modelling. Evaluation of usefulness of a selected method in modelling a railway infrastructure was the purpose of the authors. The obtained results were compared with results received by analytical way. The presented, simplified model: railway vehicle–infrastructure–substructure after appropriative validation will be used later on to analyse various technical solutions and materials in designing railway constructions.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2017, 66, 2; 107-121
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Odpowiedź dynamiczna cienkościennych powłok stożkowych obciążonych impulsem ciśnienia
Dynamic response of thin-walled conical shells subjected to pressure pulse loading
Autorzy:
Jankowski, J.
Kubiak, T.
Powiązania:
https://bibliotekanauki.pl/articles/208672.pdf
Data publikacji:
2011
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
obciążenie impulsowe
powłoki stożkowe
wyboczenie dynamiczne
dynamiczna odpowiedź
absorbery energii
dynamic buckling
conical shells
finite elements method
dynamic response
energy absorbers
impact
Opis:
W pracy zajęto się dynamiczną odpowiedzią cienkich powłok stożkowych poddanych impulsowemu obciążeniu ciśnieniem. Wymiary powłok są tak dobrane, aby mogły być stosowane jako pochłaniacze energii - panele stanowiące osłonę przeciwko fali uderzenia od wybuchu. Rozpatrzono również możliwość powstania zjawiska wyboczenia dynamicznego. Założono izotropowy materiał powłok (stal lub kompozyt) o charakterystyce biliniowej. Badano wpływ wstępnych imperfekcji kształtu na mechanizm zniszczenia. Analizy przeprowadzono, wykorzystując metodę elementów skończonych - program ANSYS 11.0.
The paper deals with dynamic buckling phenomenon in aspect of response of open conical shells, subjected to pulse loading with pressure normal to the surface. Isotropic material of shells was assumed (steel or composite) with a bilinear characteristic. In this paper, influence of initial shape imperfection (corresponding to the least frequency of free vibration) on the mechanism of shell failure was investigated. Research was carried out with finite elements method using ANSYS 11.0 tool. Moreover, conical shells were analyzed as absorbers, in aspect of the change of pulse loading energy into energy of plastic deformations. To solve this problem, finite shell element (SHELL43 - 4 nodes with 6 degrees of freedom) was used. Investigated shells were simply supported at the lower edge. Moreover, initial shape imperfections were applied for amplitudes: 0, 0.2 g and g (where g - thickness of shell). Pulse loading function was assumed as triangular with amplitude of 1 MPa or 10 MPa. Calculations were divided into two parts. First, free vibration modes and frequencies were obtained. Next, the results were performed, applying appropriate modes, for the highest values of a total energy [J], total displacement [mm], reaction of the ground [N] and equivalent Huber stress [MPa], taking into account two different values of greater radius R. Concluding, analyzed conical shells have ability to dissipate loading energy. This process can be predicted and controlled by changing geometric parameters or/and level of initial shape imperfections. Mechanism of initial failure appears near spans.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2011, 60, 1; 325-339
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies