Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural networks radial" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Sztuczne sieci neuronowe o radialnych funkcjach bazowych do śledzenia obiektów w obrazach wideo
Artificial neural networks with radial basis functions for video object tracking
Autorzy:
Szymonik, J.
Powiązania:
https://bibliotekanauki.pl/articles/305873.pdf
Data publikacji:
2013
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
śledzenie obiektów
sztuczne sieci neuronowe
radialne funkcje bazowe
object tracking
artificial neural networks
radial basis functions
Opis:
W pracy przedstawiono opis sztucznej sieci neuronowej do lokalizacji i śledzenia obiektu w obrazach wideo z wykorzystaniem środowiska MATLAB oraz wyniki badań odporności algorytmu na mogące wystąpić zakłócenia. W artykule zaprezentowana została architektura sztucznej sieci neuronowej o radialnych funkcjach bazowych. Pokazany został zarówno algorytm śledzenia celu z wykorzystaniem powyższej architektury sieci, jak i metoda modelowania oraz lokalizacji celu. W podsumowaniu przedstawione zostały wyniki przeprowadzonych symulacji algorytmów śledzących opartych na sztucznych sieciach neuronowych.
The main problem considered in this article was the artificial neural network design for target localization and target tracking in video sequence, with the use of Matlab environment. What is more, the algorithm resistance to noise and disturbances that may occur was studied. The article presents the architecture of artificial neural network with radial basis functions. The algorithm for tracking as well as the method for target modeling and localization with the use of the above network architecture is shown. In the summary there are results of conducted simulations in Matlab of video trackers based on artificial neural networks.
Źródło:
Biuletyn Instytutu Systemów Informatycznych; 2013, 11; 33-39
1508-4183
Pojawia się w:
Biuletyn Instytutu Systemów Informatycznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vehicles Classification Using the HRBF Neural Network
Klasyfikacja pojazdów z wykorzystaniem sieci neuronowej HRBF
Autorzy:
Wantoch-Rekowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/305921.pdf
Data publikacji:
2011
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
sieci neuronowe
klasyfikacja sieci
zbiór uczący
Hyper Radial Basis Function network HRBF
neural networks
networks classification
learning set
HRBF
Opis:
The paper presents the problem of using a neural network for military vehicle classification on the basis of ground vibration. One of the main elements of the system is a unit called the geophone. This unit allows to measure the amplitude of ground vibration in each direction for a certain period of time. The value of the amplitude is used to fix the characteristic frequencies of each vehicle. If we want to fix the main frequency it is necessary to use the Fourier transform. In this case the fast Fourier transform FFT was used. Since the neural network (Hyper Radial Basis Function network) was used, a learning set has to be prepared. Please find the attached results of using the HRBF neural network, which include: examples of learning, validation and test sets, the structure of the networks and the learning algorithm, learning and testing results.
W opracowaniu przedstawiono zagadnienie wykorzystania sieci neuronowej do klasyfikacji określonych typów pojazdów na podstawie analizy amplitudy drgań gruntu. Jednym z elementów systemu do pomiaru amplitudy drgań gruntu jest geofon. Umożliwia on pomiar amplitudy drgań gruntu w wybranym kierunku dla określonego przedziału czasu. Wartość wyznaczonej amplitudy wykorzystywana jest do wyznaczenia charakterystycznych częstotliwości drgań dla poszczególnych pojazdów. Do wyznaczenia charakterystycznych częstotliwości wykorzystywana jest transformata Fouriera FFT. Do klasyfikacji wykorzystana została sieć neuronowa z radialną funkcją aktywacji, dlatego też wymagane jest przygotowanie odpowiedniego zbioru uczącego. W opracowaniu przedstawiono wyniki użycia sieci HRBF. Przedstawiono strukturę oraz zawartość zbioru uczącego.
Źródło:
Biuletyn Instytutu Systemów Informatycznych; 2011, 7; 47-52
1508-4183
Pojawia się w:
Biuletyn Instytutu Systemów Informatycznych
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies