Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Porowski, A." wg kryterium: Autor


Wyświetlanie 1-6 z 6
Tytuł:
Some comments on shock tube measurements of gaseous detonations
Kilka komentarzy na temat pomiarów detonacji gazowych w rurze uderzeniowej
Autorzy:
Porowski, R.
Teodorczyk, A.
Powiązania:
https://bibliotekanauki.pl/articles/372774.pdf
Data publikacji:
2011
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
acetylen
detonacja
rura uderzeniowa
wodór
zagrożenie wybuchem
acetylene
detonation
explosion hazards
hydrogen
shock tube
Opis:
Our goal was to adopt the classical shock tube technique for the experimental investigation of the propagating shock-induced detonation wave. We used different gaseous mixtures in the driver section, namely both stoichiometric hydrogen-oxygen and acetylene-oxygen mixtures. The driven section was filled only with stoichiometric hydrogen-air mixture. An influence of the driver section mixture on the pressure and velocity of the propagating and reflected detonation wave in the driven section of the shock tube was investigated experimentally and computationally. We found some interesting observations and correlations between calculated results and experimental data. Calculated pressure and velocity values for tested mixture are in a quite good agreement with our shock tube results for the propagating detonation wave. We also tried to give some theoretical introduction on modeling the shock-induced initiation process that can place in the classical shock tube.
Celem naszej pracy była próba zaadoptowania techniki klasycznej rury uderzeniowej do badań doświadczalnych nad zjawiskiem propagacji i inicjacji fali detonacyjnej. W przeprowadzonych badaniach wykorzystaliśmy w sekcji napędzającej rury uderzeniowej stechiometryczne mieszaniny wodorowo-tlenowe oraz acetylenowo-tlenowe. Sekcja testowa wypełniona została stechiometryczną mieszaniną wodorowo-powietrzną. Podczas badań doświadczalnych i numerycznych badaliśmy wpływ mieszanin w sekcji napędzającej na ciśnienie oraz prędkość detonacji w sekcji testowej. Znaleziono kilka interesujących relacji pomiędzy wynikami obliczeń, a wynikami badań doświadczalnych.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2011, 2; 43-50
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badania doświadczalne i numeryczne temperatury zapłonu wybranych mieszanin cieczy palnych
Experimental and Numerical Study on Flash Point for Selected Liquid Fuel Blends
Autorzy:
Porowski, R.
Rudy, W.
Teodorczyk, A.
Powiązania:
https://bibliotekanauki.pl/articles/372693.pdf
Data publikacji:
2013
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
temperatura zapłonu
ciecze palne
spalanie cieczy
wybuchowość
flash point
flammable liquids
combustion of liquids
explosibility
Opis:
Artykuł zawiera rezultaty badań doświadczalnych oraz obliczenia numeryczne wyznaczenia wartości temperatury zapłonu (flash point) dla wybranych mieszanin cieczy palnych. Badania doświadczalne przeprowadzono w standardowym urządzeniu badawczym firmy Walter Herzog GmbH, typ HFP-339, działający w oparciu o metodę Pensky-Martens [5]. Badania numeryczne zrealizowano w opracowanym przez autorów kodzie numerycznym przy wykorzystaniu MS Excell i Visual Basic, z wykorzystaniem modeli dla mieszanin idealnych i nieidealnych. Wykonano również analizę porównawczą uzyskanych wyników.
This paper presents results on the experimental and numerical study on flash point for selected liquid fuel blends. The experimental part was done with the use of testing apparatus from Walter Herzog GmbH, type HFP-339 for Pensky-Martens methodology. The numerical study was conducted by our home-made software using MS Excell and Visual Basic scripts for ideal and non-ideal mixtures. As a conclusion the analysis of both experimental and numerical results was reported.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2013, 3; 103-110
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza metod badawczych granic wybuchowości cieczy palnych
Analysis of experimental methods for explosion limits of flammable liquids
Autorzy:
Porowski, R.
Rudy, W.
Teodorczyk, A.
Powiązania:
https://bibliotekanauki.pl/articles/373786.pdf
Data publikacji:
2012
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
ciecze palne
granice wybuchowości
spalanie cieczy
wybuchowość
combustion of liquids
explosibility
explosion limits
flammable liquids
Opis:
W artykule tym dokonano przeglądu metod oraz stanowisk badawczych służących do określania granic wybuchowości cieczy palnych. Zaprezentowano tu stanowiska i metody zalecane przez międzynarodowe standardy, takie jak PN-EN, czy ASTM. Opisano również prowadzone dotychczas wybrane prace naukowe w zakresie badań eksperymentalnych granic wybuchowości cieczy palnych. Artykuł ten stanowi przegląd dostępnych metod badawczych oraz aparatury do prowadzenia pomiarów granic wybuchowości cieczy palnych na potrzeby bezpieczeństwa w przemyśle.
This paper presents a state of the art on testing methods and experimental facilities for determination explosion limits of vapors from combustible liquids. The paper presents facilities and testing methods recommended by international standardization authorities, e.g. PN-EN and ASTM standards. Also a survey of experimental research works on explosion limits of flammable liquids is given. The paper summarizes the available testing methodologies and facilities which can be necessary for proper determination of vapors flammability in the process industries.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2012, 4; 63-70
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Oznaczanie toksyczności produktów spalania – przegląd stanu wiedzy
Determination of Toxicity in Combustion Products – State of the Art
Autorzy:
Porowski, R.
Kuźnicki, Z.
Małozięć, D.
Dziechciarz, A.
Powiązania:
https://bibliotekanauki.pl/articles/373969.pdf
Data publikacji:
2018
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
toksyczność pożarowa
produkty spalania
gazy pożarowe
fire toxicity
combustion products
fire effluents
Opis:
Cel: Celem artykułu jest przedstawienie przeglądu stanu wiedzy w zakresie oceny toksyczności produktów spalania, emitowanych przede wszystkim podczas rozwoju pożaru w pomieszczeniach. Opisano prace badawcze prowadzone przez ośrodki naukowe na całym świecie, ze szczególnym nastawieniem na badania eksperymentalne w zakresie zjawiska oznaczania toksyczności produktów spalania oraz mierzone podczas tych badań parametry wpływające na zdrowie i życie ludzi. Wyjaśniono również podstawy teoretyczne związane z oddziaływaniem toksycznych produktów spalania, scharakteryzowano czynniki mające wpływ na ich powstanie podczas procesów spalania, jak również parametry krytyczne niezbędne do oceny toksyczności produktów spalania. Wprowadzenie: Najczęstszą przyczynę śmierci w pożarach stanowi oddziaływanie na organizm ludzki toksycznych gazów. Gazowe produkty spalania – takie jak tlenek węgla i cyjanowodór – są głównym składnikiem toksyn prowadzących do zgonu. Do produktów spalania zalicza się również inne gazy duszące czy drażniące. Ich działanie w układzie oddechowym, w przeciwieństwie do tlenku węgla, polega głównie na utrudnieniu oddychania poprzez powstający śluz. Drażniące działanie na oczy utrudnia ucieczkę z miejsca objętego pożarem. W związku z powyższym pojawia się potrzeba szczegółowych badań nad toksycznością produktów spalania poszczególnych materiałów i wyrobów budowlanych, które są powszechnie stosowane w architekturze oraz budownictwie. Bez wątpienia należą do nich również kable elektryczne, których powłoki zewnętrzne składają się z licznych polimerów i innych tworzyw sztucznych. Każdy pożar charakteryzuje się określonymi etapami rozwoju. Pierwszy z nich stanowi prawie zawsze powolny rozkład termiczny. Temperatura, w jakiej materiał zostaje poddany rozkładowi termicznemu, również ma duże znaczenie dla rodzaju i ilości uwalniających się substancji chemicznych. Metodologia: Artykuł został opracowany na podstawie przeglądu literatury oraz dostępnych wyników prac naukowych dotyczących oznaczania toksycznych produktów spalania – szczególnie podczas rozwoju pożarów w pomieszczeniach. Wnioski: W środowisku pożaru odkryto dużą ilość znanych chemikaliów o właściwościach drażniących. Wytwarzają się one podczas pirolizy i utleniania materiałów. Produkty spalania powstałe z różnych materiałów są często bardzo podobne. Dla wielu tworzyw organicznych, a szczególnie dla prostych polimerów węglowodorowych (takich jak polipropylen lub polietylen) główne produkty pirolizy składające się z różnych fragmentów węglowodorowych są nieszkodliwe. Kiedy polipropylen poddany jest pirolizie, powstają produkty takie jak etylen, etan, propen, cyklopropan, metanal, butan, aldehyd octowy, toluen, styren, a ich atmosfera nie ma wpływu na ssaki naczelne. Gdy produkty zostaną utlenione podczas bezpłomieniowego rozkładu w powietrzu, niektóre z nich są przekształcane w bardzo drażniące produkty. Taka atmosfera okazała się silnie drażniąca dla myszy i ssaków naczelnych. Oprócz toksycznych gazów pożarowych, utratę podstawowych funkcji życiowych w organizmie ludzkim podczas pożaru może również powodować dym. Ogranicza on nie tylko widoczność, ale także zawiera rozdrobnioną materię, która jest na tyle mała, by stwarzać zagrożenie dla układu oddechowego. Rozkład wielkości cząstek zależy od materiału, temperatury i stanu pożaru. Typowy rozmiar kulistych kropelek dla spalania tlącego wynosi 1 μm, podczas gdy nieregularne cząstki sadzy są znacznie większe. Ich badanie jest jednak bardziej wymagające i w znacznym stopniu zależne od technik pomiaru i próbkowania.
Aim: The aim of this paper is to present the state of the art on toxicity assessment of combustion products which may occur during indoor fire development. The authors described the results of studies carried out by research institutions all over the world, with a particular focus on the determination of combustion products and parameters measured during such studies which have an impact on human life and the environment. An outline was also presented of the fundamental and theoretical aspects of mechanisms of toxic combustion product formation and certain factors contributing to such formation during combustion processes as well as critical parameters which may prove essential for the assessment of combustion product toxicity. Introduction: Most of deaths caused by fires result from the impact of toxic gases on the human body. Gaseous combustion products, such as, carbon monoxide and hydrogen cyanide, are the major components of lethal toxins. The combustion products also include other asphyxiant or irritant gases. Their action in the respiratory system, in contrast to carbon monoxide, consists mainly in causing difficulty of breathing as a result of the produced mucus. And their eye-irritating effect makes it difficult to escape from the place of the fire given the limited visibility caused by smoke. Due to the above, there is a need for detailed research on the toxicity of combustion products of specific construction materials and products that are commonly used in architecture and construction. The materials and construction products in question include electric cables, whose external coatings often contain a whole range of polymers and other plastics. Each fire is characterised by specific stages of development. The first of them will almost always be a slow thermal breakdown. The temperature at which the material is subjected to thermal decomposition is also important for the type and amount of chemicals released. Methodology: The paper was prepared on the basis of the state of the art taken from the available literature and research results on determination methods of toxic combustion products in particular during indoor fire development. Conclusions: A large number of known irritant chemicals have been found in the fire environment. Irritant chemicals are formed during the pyrolysis and oxidation of materials, and the combustion products of various materials are often very similar. For many organic materials, and especially for simple hydrocarbon polymers, such as polypropylene or polyethylene, the main pyrolysis products consisting of various hydrocarbon fragments are harmless. Polypropylene pyrolysis products include ethylene, ethane, propene, cyclopropane, formaldehyde, butane, acetaldehyde, toluene and styrene are formed, which do not affect primates. When products are oxidised during flameless decomposition in the air, some of them are transformed into very irritating products. Such an atmosphere proved strongly irritating to mice and primates. In addition to toxic fire gases, the loss of basic vital functions in humans during a fire can also be caused by smoke. It not only limits visibility, but also contains fragmented matter, which is small enough to pose a threat to the respiratory system. The particle size distribution depends on the material, temperature and stage of the fire. The typical size of spherical droplets for smoldering is 1 μm, while irregular soot particles are considerably larger, harder to identify and heavily dependent on the measurement and sampling methods.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2018, 52, 4; 82-98
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Budynek do ćwiczeń pożarowych dla ratowników KSRG: analiza wymagań i przykładowe rozwiązania
Facility for firefighting training of KSRG rescuers: Analysis of requirements and possible solutions
Autorzy:
Kielin, J.
Porowski, R.
Małozięć, D.
Majka, A.
Lesiak, P.
Powiązania:
https://bibliotekanauki.pl/articles/372695.pdf
Data publikacji:
2013
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
szkolenie strażaków PSP
szkoleniowe stanowiska poligonowe
system ratowniczy
training of firefighters
training facilities
rescue system
Opis:
Cel: Celem niniejszego artykułu jest udzielenie odpowiedzi na pytanie, w jaki sposób można podnosić umiejętności ratowników w zakresie zwalczania pożarów w obiektach wraz z przedstawieniem przykładowych, najlepszych praktycznych rozwiązań w tym zakresie. Wprowadzenie: W artykule tym dokonano omówienia wymagań techniczno-organizacyjnych w zakresie projektowania i wyposażenia w stanowiska szkoleniowe i użytkowania budynku do ćwiczeń pożarowych dla ratowników opisanych w standardach z serii DIN 14097. Jako przykładowe rozwiązanie przedstawiono szczegółowy opis takiego budynku użytkowanego do szkolenia ratowników w Landowej Szkole Badenii-Wirtembergii w Niemczech. Budynek do ćwiczeń pożarowych składa się z trzech części, które razem tworzą wolnostojący obiekt mieszkalno-handlowy. W środkowej strefie budynku znajdują się schody, instalacje sanitarne, stanowisko dyspozytorskie oraz funkcje obsługowe. Dwie zewnętrzne części wykorzystywane do ćwiczeń są ukształtowane zgodnie z ich użytkowym przeznaczeniem. Zachodnia część zawiera na parterze sklep, a na piętrze biuro, w części wschodniej natomiast na parterze zlokalizowany jest garaż z warsztatem, a na dwóch piętrach mieszkania. Metodologia: Analiza literaturowa w zakresie projektowania, wyposażenia w stanowiska szkoleniowe i użytkowania budynku do ćwiczeń pożarowych dla ratowników, analiza ustanowionych dokumentów normatywnych w tym obszarze oraz analiza dostępnych praktycznych rozwiązań na przykładzie budynku wykorzystywanego w procesie szkolenia ratowników w Landowej Szkole Badenii-Wirtembergii w Niemczech. Wnioski: Ćwiczenia prowadzone we właściwie zaprojektowanych i wyposażanych w stanowiska szkoleniowe budynkach do ćwiczeń pożarowych są bezpieczne oraz bezawaryjne. Bliskie realnym scenariusze pożarowe, utrudnienia związane z występowaniem wysokiej temperatury i działania przy praktycznym zastosowaniu środków gaśniczych prowadzą do podnoszenia umiejętności zawodowych wszystkich uczestników ćwiczeń. To co dotychczas z dużym wysiłkiem wyjaśniane było w formie teoretycznej, uczestnik szkolenia w budynku do ćwiczeń pożarowych odczuwa teraz na własnej skórze. Poprzez doświadczenia w ciągu jednego dnia ćwiczeń, kursanci nie tylko otrzymują wiedzę, ale trwale przyswajają i zmieniają sposób postępowania podczas rzeczywistych działań ratowniczo-gaśniczych.
Purpose: The purpose of this article is to answer the question how to improve the skills of rescuers in the scope of extinguishing fires in buildings. The authors present examples of best practical solutions in this area. Introduction: This paper gives some overview of both technical and organizational requirements of DIN 14097 on designing and equipping a facility for firefighting training of rescuers. The article describes an example of such a facility for firefighting training facility at Land School of Baden-Wuerttemberg in Germany. The Building for firefighting training consists of three parts, which together form a detached building, with residential and commercial parts. There are stairs, plumbing, places for dispatcher and handling in the central zone of this building ,. The two outer parts that are used for training are formed in accordance with their functions. There is a shop on the ground floor and an office on the first floor in the west part of the building. On the ground floor, of the east part are located a garage and a workshop, while there are apartments on the first and second floor. Methodology: The analysis of literature and normative documents in the scope of design and usage of firefighting training facilities and the examination of available practical solutions on the basis of exemplary building used for rescuers training at Land School of Baden-Wuerttemberg in Germany. Conclusions: Trainings conducted in properly designed and equipped buildings for firefighting practice are safe and trouble-free. Realistic fire scenarios, difficulties arising from high temperatures and activities with the practical application of extinguishing agents enhance professional skills of all training participants. Some explanations made so far with a great effort in the theoretical way now can be shown in the practical way enabling the participants of the training to feel the real danger. Thanks to acquiring own experience, the participants of the training not only receive knowledge, but also it acquire and permanenty change the way of their behaviour during real-life firefighting and rescue operations.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2013, 4; 115-121
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie CFD wentylacji pożarowej w tunelu drogowym
CFD Modelling of Fire Ventilation in Road Tunnels
Autorzy:
Porowski, R.
Bańkowski, P.
Klapsa, W.
Starzomska, M.
Więckowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/373734.pdf
Data publikacji:
2018
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
wentylacja pożarowa
pożary w tunelach drogowych
modelowanie pożarów
fire ventilation
fires in road tunnels
fire modelling
Opis:
Cel: Celem pracy było wykonanie symulacji numerycznej rozwoju pożaru w tunelu drogowym za pomocą programu Fire Dynamics Simulator. Na tej podstawie została dokonana analiza wpływu mocy źródła pożaru na efektywność działania systemu wentylacji pożarowej. W pierwszej części artykułu przedstawiono zagadnienia związane z rozwojem pożaru. Skupiono się na aspektach teoretycznych parametrów, takich jak: rozchodzenie się dymu, rozwój pożaru, widzialność, szybkość wydzielania ciepła oraz temperatura maksymalna. Systemy wentylacji pożarowej, które są stosowane w tunelach drogowych zostały przedstawione na schematach, a także omówione zostały zasady ich działania. Kolejną część artykułu poświęcono przedstawieniu podstaw teoretycznych programu Fire Dynamics Simulator. Ostatnia część pracy zawiera opis przeprowadzonych badań oraz analizę i porównanie wyników. W części badawczej wykonano symulacje czterech scenariuszy, w zależności od mocy pożaru. Zebrane dane zostały poddane analizie. Sprawdzono, jak zachowuje się pożar w przestrzeni zamkniętej w zależności od mocy jego źródła. Dodatkowo przetestowano efektywność działania zastosowanego systemu wentylacji. Łącznie wykonano symulacje numeryczne z mocami pożaru: 202 MW, 157 MW, 119 MW oraz 67 MW. Metodologia: Artykuł został opracowany na podstawie przeglądu literatury i dostępnych w niej wyników prac naukowych dotyczących dynamiki zjawiska pożaru w tunelach drogowych, jak również badań numerycznych CFD w programie Fire Dynamics Simulator. Wnioski: Na podstawie wykonanych badań numerycznych przybliżono zjawiska, jakie zachodzą w trakcie pożaru w tunelu drogowym. Otrzymane dane można analizować i interpretować, wyciągając przy tym wnioski, które mogą zwiększyć bezpieczeństwo w tunelach. Jednym z najważniejszych aspektów, który ma bezpośredni wpływ na bezpieczeństwo ludzi podczas pożaru jest dobór odpowiedniego systemu wentylacji. Na rynku istnieje wiele rozwiązań systemowych, posiadających zarówno wady, jak i zalety. W badanych przypadkach wykorzystano wentylację wzdłużną wraz z dwoma wentylatorami wywiewnymi. Wentylacja wzdłużna wytwarzała przepływ powietrza o prędkości 2 m/s w całym przekroju tunelu. Na podstawie otrzymanych wyników można stwierdzić, że przepływ powietrza o prędkości 2 m/s ogranicza rozprzestrzenianie się ciepła na wysokości 1,8 m od poziomu podłoża tunelu, niezależnie od mocy pożarów przyjętych w badaniach. Najwcześniej temperatura zaczęła wzrastać dla pożaru o mocy 119 MW, a najpóźniej dla pożaru o mocy 67 MW. W dalszych częściach tunelu temperatura zmieniała się w wąskim zakresie i nie przekroczyła 22 ̊C. Temperatura nad źródłem dochodziła do wartości 700 ̊C, natomiast za centrum pożaru maksymalna temperatura wynosiła około 1200 ̊C.
Aim: The purpose of this work was to perform numerical simulation of fire development in a road tunnel using the Fire Dynamics Simulator (FDS) programme. On this basis, an analysis of the impact of the fire source's power on the effectiveness of the fire ventilation system was performed. The first stage of the work presents issues related to fire development. The focus was on presenting the theoretical part of the parameters, such as smoke propagation, fire development, visibility, heat release rate and maximum temperature. The next stage of the article focuses on presenting the theoretical foundations about the Fire Dynamics Simulator program. The last stage of the work contains a description of the conducted research, as well as the analysis and comparison of results. In the research part, simulations of 4 scenarios were carried out, depending on the fire power. The collected data was analysed and conclusions were drawn. It was checked how a fire in a confined space behaves depending on the power of the source. In addition, the effectiveness of the ventilation system used was tested. Introduction: Numerical simulations are used to improve fire safety in road tunnels. Numerical calculations allow to assess the suitability of the fire protection systems used. One such programme is the Fire Dynamics Simulator, which was discussed at work. In addition, theoretical issues related to fire development were presented. Issues such as maximum temperature, visibility, the process of smoke propagation and the power of fire were raised. Fire ventilation systems that are used in road tunnels are presented in the diagrams, along with the principles of their operation discussed. In total, numerical simulations with fire performance were performed: 202 MW, 157 MW, 119 MW and 67 MW.Methodology: The article was compiled on the basis of the review of literature available in the publications of the results of scientific works on the dynamics of the fire phenomenon in road tunnels, as well as numerical CFD studies in the Fire Dynamics Simulator program. Conclusions: Based on the numerical tests carried out, the phenomena that occur during a fire in a road tunnel are approximated. The data received can be analysed and interpreted, and conclusions can be drawn to increase safety in tunnels. One of the most important aspects that has a direct impact on the safety of people during a fire is the selection of an appropriate ventilation system. There are many system solutions on the market that have both pros and cons. In the cases studied, longitudinal ventilation was used along with two exhaust fans. Longitudinal ventilation generated airflow at the velocity of 2 m / s in the entire tunnel cross-section. Based on the obtained results, it can be concluded that the airflow rate of 2 m / s limits the spread of heat at a height of 1.8 m from the ground level of the tunnel, regardless of the power of fires adopted in the tests. The earliest temperature increase occurred for a 119 MW fire, and at the latest for a fire of 67 MW. In the further parts of the tunnel, the temperature changed in a narrow range and did not exceed 22 ̊C. The temperature over the source reached 700 ̊C, while the centre of the fire reached the maximum temperature of 1200 ̊C.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2018, 52, 4; 140-166
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies