Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę ""Klein"" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Algebro-geometric approach to the Ernst equation I. Mathematical Preliminaries
Autorzy:
Richter, O.
Klein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1342668.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
1. Introduction. It is well known that methods of algebraic geometry and, in particular, Riemann surface techniques are well suited for the solution of nonlinear integrable equations. For instance, for nonlinear evolution equations, so called 'finite gap' solutions have been found by the help of these methods. In 1989 Korotkin [9] succeeded in applying these techniques to the Ernst equation, which is equivalent to Einstein's vacuum equation for axisymmetric stationary fields. But, the Ernst equation is not an evolution equation and, due to this fact, one is in this case usually confronted with boundary value problems which have not been considered there. On the other hand, Neugebauer and Meinel [10] were able to transform the boundary value problem for the rigidly rotating disk of dust into a scalar Riemann-Hilbert problem on a hyperelliptic Riemann surface and gave the solution to this problem in terms of theta functions. The methods they used were suited to the particular problem and one may ask to which extent algebro-geometric methods are useful for the solution of boundary value problems of the Ernst equation. In order to tackle this problem one should at first develop the Riemann-Hilbert technique on Riemann surfaces in detail and then apply this method in order to find solutions to the Ernst equation. The first of these two papers is devoted to the brief introduction into Riemann surface techniques (for a more detailed exposition see the cited literature). The second paper shows how the developed methods apply to the Ernst equation.
Źródło:
Banach Center Publications; 1997, 41, 1; 195-204
0137-6934
Pojawia się w:
Banach Center Publications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klein-Gordon type decay rates for wave equations with time-dependent coefficients
Autorzy:
Reissig, Michael
Yagdjian, Karen
Powiązania:
https://bibliotekanauki.pl/articles/1207658.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
This work is concerned with the proof of $L_p - L_q$ decay estimates for solutions of the Cauchy problem for the Klein-Gordon type equation $u_{tt} - λ^2(t)b^2(t) (Δu - m^{2}u) = 0$. The coefficient consists of an increasing smooth function $λ$ and an oscillating smooth and bounded function b which are uniformly separated from zero. Moreover, $m^2$ is a positive constant. We study under which assumptions for λ and b one can expect as an essential part of the decay rate the classical Klein-Gordon decay rate n/2(1/p-1/q).
Źródło:
Banach Center Publications; 2000, 52, 1; 189-212
0137-6934
Pojawia się w:
Banach Center Publications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The symmetry algebra and conserved Currents for Klein-Gordon equation on quantum Minkowski space
Autorzy:
Klimek, MaŁgorzata
Powiązania:
https://bibliotekanauki.pl/articles/1342812.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
The symmetry operators for Klein-Gordon equation on quantum Minkowski space are derived and their algebra is studied. The explicit form of the Leibniz rules for derivatives and variables for the case Z=0 is given. It is applied then with symmetry operators to the construction of the conservation law and the explicit form of conserved currents for Klein-Gordon equation.
Źródło:
Banach Center Publications; 1997, 40, 1; 387-395
0137-6934
Pojawia się w:
Banach Center Publications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies