Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "wzajemne" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Wykorzystanie transformacji log-Hough’a do tworzenia reprezentacji obrazu dla klasyfikatora neuronowego
Log-Hough based image representation for the neural classifier
Autorzy:
Piekarski, P.
Mikrut, Z.
Powiązania:
https://bibliotekanauki.pl/articles/130564.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
fotogrametria
reprezentacja obrazu
log-polar
log-Hough
wzajemne dopasowanie
sieci backpropagation
photogrammetry
image representation
mutual matching
backpropagation networks
Opis:
Artykuł przedstawia metodę tworzenia reprezentacji fragmentu obrazu oparta o transformacje log-polar i log-Hough’a. Transformacje te są uważane za uproszczone modele biologicznych systemów wizyjnych. Reprezentacje obrazu stanowią rzuty przestrzeni log-Hough’a na osie: katów i promieni. Tak utworzone wektory stanowią wejście do sieci neuronowej typu backpropagation. Zadaniem sieci jest klasyfikacja reprezentacji obrazów na „korzystne” i „niekorzystne” z punktu widzenia późniejszego dopasowywania, którego celem jest automatyczna orientacja wzajemna zdjęć fotogrametrycznych. Badano sieci z jedna warstwa ukryta o zmiennej liczbie elementów. Najlepsze sieci rozpoznały zbiór testowy na poziomie 70%.
In the present paper, the method for generation of the sub-image representation is presented. The method is based on log-polar and log-Hough transforms. These transforms are considered to be very simplified models of the biological visual systems. The projections of the log- Hough space onto the two axes (the angles and the radii ones) are taken as the sub-image representation. These vectors form an input to the backpropagation neural network. The network task is to classify the sub-images as “advantageous” or “non-advantageous” from the subsequent mutual matching point of view. Several networks which have a variable number of neurons in one hidden layer have been tested. The best recognition rates about 70% (test set) have been obtained.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17b; 639-647
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selekcja podobrazów dla potrzeb dopasowywania zdjęć lotniczych oparta na histogramach gradientu i sieci neuronowej
Selection of sub-images for aerial photographs matching purposes based on gradient distribution and neural networks
Autorzy:
Czechowicz, A.
Mikrut, Z.
Powiązania:
https://bibliotekanauki.pl/articles/131000.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
fotogrametria
wzajemne dopasowanie
algorytm Canny'ego
histogram gradientów
SOM
sieci Kohonena
sieci backpropagation
photogrammetry
mutual matching
Canny edge detector
gradient histogram
Kohonen networks
backpropagation networks
Opis:
Artykuł przedstawia wyniki wykorzystania sieci neuronowych do selekcji podobrazów oraz wyniki wyszukiwania wybranych obszarów na pozostałych zdjęciach z wykorzystaniem rozkładu odpowiedzi dla sieci SOM Kohonena. Zaproponowano reprezentacje fragmentu obrazu oparta na rozkładzie wartości modułu gradientu i jego kierunku. Badania przeprowadzono na dziewięciuset podobrazach zdjęć lotniczych okolic Krakowa o różnym pokryciu terenu podzielonych na trzy kategorie: obszarów korzystnych, pośrednich i niekorzystnych pod względem wyszukiwania cech do orientacji wzajemnej. Dla każdego z obrazów, w oparciu o algorytm Canny’ego, wyznaczono krawędzie. Na podstawie wartości gradientu i kierunków wykrytych krawędzi sporządzono histogram, który następnie posłużył wyznaczeniu reprezentacji podobrazu w postaci profilu kierunku. Tak przygotowana reprezentacje wykorzystano do uczenia sieci neuronowych metoda nadzorowana (backpropagation) oraz nienadzorowana (Kohonena), a następnie do klasyfikacji obszarów nauczonymi sieciami. W przypadku sieci backpropagation miara efektywności klasyfikacji był globalny współczynnik rozpoznania oraz macierz pomyłek. Dla sieci Kohonena wyznaczano współczynnik kompletności i poprawności. Wyniki zestawiono z rezultatami otrzymanymi na drodze uczenia metoda wstecznej propagacji błędów, gdzie generowane na mapie Kohonena odpowiedzi stanowiły sygnał wejściowy dla warstwy backpropagation. W dalszym etapie wytypowane obszary korzystne poszukiwano na sąsiednich obrazach. Wzmocniony funkcja preferująca wysokie wartości rozkład odpowiedzi na mapie cech siec Kohonena, uzyskany dla podobrazów korzystnych, porównywano z rozkładem dla podobrazów o tych samych wymiarach na sąsiednich zdjęciach. Za miarę podobieństwa obszarów przyjęto współczynnik korelacji dla porównywanych odpowiedzi sieci.
This paper describes the application of neural networks for selection of sub-images and the result of the search for the selected areas on the remaining photographs with the utilisation of Kohonen’s SOM network responses distribution. Image fragment representation based on the gradient magnitude values distribution and its direction was proposed. The research was conducted on nine hundred sub-images, taken from aerial photographs of the Cracow’s environs with different terrain cover, divided into three categories: advantageous, intermediate and disadvantageous areas in respect of searching for the features for mutual matching. The edges were detected with Canny algorithm. Based on the gradient values and the directions of the edges, the histogram was created and used to determine the representation of the sub-image in the direction’s profile form. The prepared representation served for teaching the neural network using supervised (backpropagation) and unsupervised (Kohonen) method and later for the classification. For the backpropagation network, the classification effectiveness was measured using the global recognition coefficient and the cooccurrence matrix. For the Kohonen network, the completeness and correctness coefficients were determined. Afterwards, the two networks were put together: the responses generated on the Kohonen map constituted the input signal for the backpropagation layer. In the next step, the adjacent images were sought for the chosen areas. Response distribution on the Kohonen network feature map, amplified with the function preferring the high values, was compared with the distribution for the same size sub-images of the adjacent photographs. To measure the similarity of the subimages, the correlation coefficient to compare network’s responses was used.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17a; 149-158
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies