Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Digital Image Analysis" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Nowe spojrzenie na stare mikrodensytogramy
Autorzy:
Miałdun, J.
Powiązania:
https://bibliotekanauki.pl/articles/130720.pdf
Data publikacji:
2002
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
metoda analogowa
teledetekcja
cyfrowa analiza obrazu
analogue method
remote sensing
digital image analysis
Opis:
W wielu pracowniach teledetekcyjnych istnieją bogate zbiory mikrodensytogramów pozyskanych w minionych latach metodami analogowymi. Opracowane odpowiednimi na ówczesne czasy metodami są dziś trudne do wykorzystania. Niniejsza praca zawiera propozycją metodyki ponownego wykorzystania tych często unikatowych danych teledetekcyjnych. Metodyka opiera się na cyfrowej analizie obrazu wykresów wykonanych na papierze i wzbogacona jes to nowe parametry — n. p. o wymiar fraktalny.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2002, 12; 269-274
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metod analizy obrazów do automatycznej detekcji i pomiaru źrenic oczu
Methods of image analysis used for automatic detection of human eye pupils
Autorzy:
Koprowski, R.
Tokarczyk, R.
Wróbel, Z.
Powiązania:
https://bibliotekanauki.pl/articles/131258.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
digital image
image analysis
correlation
neuron network
morphological analysis
obraz cyfrowy
analiza obrazu
korelacja
sieć neuronowa
analiza morfologiczna
Opis:
Potrzeby diagnostyki medycznej wad budowy i postawy człowieka wymagają stworzenia prostej metody jego pozycjonowania w trójwymiarowej przestrzeni. Jedną z metod wyznaczania położenia charakterystycznych punktów ciała jest metoda fotogrametryczna. Pomierzone punkty na zdjęciach służą do zbudowania przestrzennego modelu i za pomocą punktów dostosowania umieszczenia go w układzie odniesienia. Fotogrametryczny system do pomiaru 3D punktów ciała ludzkiego opracowany w Zakładzie Fotogrametrii i Informatyki Teledetekcyjnej WGGiIŚ AGH w Krakowie wymaga pomiaru na zdjęciach cyfrowych wybranych miejsc ciała ludzkiego, sygnalizowanych styropianowymi kulkami-markerami oraz środków źrenic oczu. W ramach automatyzacji pomiaru na zdjęciach prowadzone są badania nad metodami detekcji i pomiaru trzech grup punktów: fotopunktów, markerów na pacjencie oraz źrenic oczu Niniejsze opracowanie dotyczy metody automatycznego pomiaru trzeciej grupy punktów pomiarowych. Opracowana metoda detekcji źrenic oczu wymaga zrealizowania celów cząstkowych: detekcji markerów na ciele pacjenta, segmentacji obrazu ciała dla wykrycia głowy z rejonem oczu, wykrycia i pomiaru środków źrenic. Pierwszy z celów osiągnięto wykorzystując metodę korelacji krzyżowej. Do wykrycia rejonu oczu wykorzystano analizę skupień zbioru wspołrzędnych metodą k najbliższych sąsiadów. Dalsze przybliżenie rejonu oczu osiągnięto wykorzystując analizę statystyczną dużej ilości zdjęć pacjentów dla wyznaczenia współczynnika kryterium rejonizacji. Metodyka wyznaczania położenia oczu, centralnych punktów położenia źrenic została oparta na sieciach neuronowych ze wsteczną propagacją błędu. Uzyskana dokładność metody została oceniona na poziomie około 1 piksela, jej skuteczność w znacznej mierze zależy od prawidłowej detekcji markerów na ciele pacjenta.
The needs of medical rehabilitation requires the creation of a simple method for the positioning of a human body in 3-D space. The method of posture analysis consists in simple visualization of particular characteristic points of the patient’s body. Usually, an assessment of the relative displacement and asymmetry of these points are a reliable measure of pathological body posture deviation. One of the methods of determining the position of characteristic points is the photogrammetric method. The points measured in the images are used to create a spatial model and, based on control points, position it in a reference system. The photogrammetric system for measuring 3D points located on a human body has been developed in the Department of Photogrammetry and Remote Sensing Informatics, Technical University – AGH Kraków. In the system, on digital images (taken with two compact, free-focus-type digital cameras), special markers (light foamed polystyrene balls) located on chosen points of human body and the center of an eye pupil are measured. To make the system more automatic, the research is carried on to automatically detect and measure the three following groups of points: control points, markers located on the human body and eye pupil. In this paper, the method of automatic measurement of last group of points is considered. The developed method of eye pupil detection requires achieving the following goals: detection of markers located on the human body, segmentation of the body image to detect a head, approximate eye localization and, finally, the measurement of a pupil center. The first goal was achieved by using the cross correlation method. The localization of the eyes was done by analyzing the coordinates’ set concentration by k nearest neighbors. The achieved results were divided into two sets pa 1 and pa 2 , which consist of data on the position of markers located on the front and back sides of body. A further approximation of eye location was achieved using statistical analysis of many images to determine the coefficient as a criterion for region membership. The methodology of determination of eye position, and pupil center were based on a neural network with backward error propagation. The achieved accuracy was estimated as 1 pixel, but the efficiency strongly depends on the proper detection of the markers located on the patient’s body.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2006, 16; 305-317
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie analizy falkowej w procesie filtracji obrazów cyfrowych
Autorzy:
Kędzierski, M.
Powiązania:
https://bibliotekanauki.pl/articles/130392.pdf
Data publikacji:
2002
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
analiza falkowa
filtracja obrazu
obraz cyfrowy
usuwanie szumów z obrazu
wavelet analysis
image filtering
digital image
image denoising
Opis:
Referat przedstawia podstawy teoretyczne i możliwości wykorzystania analizy folkowej we współczesnej fotogrametrii cyfrowej. Wykorzystując analizą falkową i jej właściwości możemy przefiltrować obrazy cyfrowe w sposób efektywniejszy niż przy klasycznym podejściu. W opracowaniach, w których materiał wyjściowy (zdjęcia lotnicze) są obarczone szumem lub nie nadają się do wykorzystania w procesie cyfrowej korelacji obrazów analiza falkowa może przynieść rozwiązanie problemów. W artykule omówino zagadnienie usuwania szumów oraz „ wydobycia " krawędzi z reprezentacji cyfrowej obrazu.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2002, 12; 178-184
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykrywanie sygnalizowanych punktów na obrazach cyfrowych bliskiego zasięgu z wykorzystaniem analiz typu GIS
Detection of close range digital image signalized points using GIS analysis
Autorzy:
Mierzwa, W.
Powiązania:
https://bibliotekanauki.pl/articles/129599.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
obraz cyfrowy
analiza tekstury
wykrywanie obiektów
fraktale
digital image
object detection
texture analysis
fractal
Opis:
Wykrywanie i automatyczny pomiar położenia punktów na obrazach cyfrowych jest jednym z podstawowych zadań fotogrametrii cyfrowej i realizowane jest przez zaawansowane oprogramowanie fotogrametryczne. W artykule podjęto próbę oceny na ile oprogramowanie GIS, zwłaszcza wykorzystujące rastrowy model danych może być przydatne do znajdowania na obrazach cyfrowych bliskiego zasięgu obiektów o określonych cechach. Dla wyszukiwania obrazów kulek zlokalizowanych na ciele pacjenta w fotogrametrycznym systemie trójwymiarowego pozycjonowania ciała dla celów diagnozy wad postawy opracowanym w Zakładzie Fotogrametrii i Informatyki Teledetekcyjnej Akademii Górniczo-Hutniczej w Krakowie, przydatne mogą być analizy tekstury obrazu. Pacjent fotografowany jest na specjalnym stanowisku pomiarowym, równocześnie za pomocą dwóch kamer cyfrowych Sylwetka pacjenta widoczna jest również od tyłu w lustrze usytuowanym za pacjentem. Obrazy wykonano aparatem cyfrowym OLYMPUS CAMEDIA C120 o rozdzielczości 1600×1200 pikseli. Obrazami kulek są jasne lub kolorowe plamki o kształcie zbliżonym do okręgu o wymiarach od kilku do kilkunastu pikseli w zależności od lokalnej skali obrazu. Jako kryteria wyszukiwania kulek przyjęto jednorodność odbicia spektralnego ( w przyjętym zakresie), rozmiar oraz kształt zbliżony do okręgu. Obiecujące wyniki uzyskano stosując do wykrywania kulek fraktale. Obraz wartości fraktalnej poddano przekształceniom polegającym na wyeliminowaniu obiektów o wartości fraktalnej mniejszej niż 2.8, usunięciu obiektów o powierzchni większej niż 60 pikseli oraz współczynnika zwartości większego niż 0.72. Parametry ustalono na podstawie szczegółowej analizy cech jednego typowego obrazu i wykorzystano do analizy innych dwóch obrazów. Zastosowana procedura pozwoliła na poprawne wydzielenie 85 % zasygnalizowanych punktów. Przy ustalaniu wartości parametrów kierowano się założeniem, że mniejszym błędem jest wyznaczenie większej liczby obiektów niż pominięcie obiektów przez przyjęcie zbyt ostrych kryteriów. Położenie wydzielonych obiektów określono jako współrzędne środka ciężkości obszaru wyznaczone funkcją polyras jako polygon locator. W celu oceny dokładności współrzędnych określonych automatycznie porównano je z pomierzonymi manualnie. Odchylenie standardowe różnic współrzędnych wyniosło S x,y = 0.32 piksela co odpowiada 1÷2 mm w układzie obiektu. Uzyskana dokładność jest wystarczająca dla celów diagnozowania wad postawy. W przeprowadzonych analizach wykorzystano oprogramowanie IDRISI-32.
Detection and automatic position measurement on digital images is one of the basic tasks of digital photogrammetry and is done using advanced photogrammetric software. In this paper, an attempt was made to show to what extent GIS software, which uses a raster data model, can be used to detect particular features of objects with close range digital images. Texture analysis can be useful in locating the position of balls attached to the human body in a photogrammetric system for 3D measuring for diagnosis of posture defects, developed in the Department of Photogrammetry and Remote Sensing Informatics of the University of Mining and Metallurgy, Kraków. The images of the patient are taken on a special measuring stand, simultaneously with the use of two digital cameras. The back of the patient body is also visible in the mirror situated behind the patient. The images were taken with a OLYMPUS CAMEDIA C120 digital camera with a resolution of 1600×1200 pixels. The images of balls are light or colored spots with an approximately circular shape and dimensions ranging from a few to a dozen or so pixels, depending on the local image scale. As criteria for ball detection, the similarity of spectral reflectance (in assumed range), dimension and shape similar to a circle were assumed. Promising results in detecting the balls have been achieved using the concept of fractal dimension.The image of fractal dimension were processed to eliminate features with fractal dimensions less then 2.8, remove feature areas less then 60 pixels and a compactness ratio greater then 0.72. The parameters were chosen by closely analyzing typical images and then applying these parameters to analyze the other two. The selected procedure properly detected 85 % of the signal points. In determining the value of parameters, it was assumed that there would be fewer mistakes if more features were detected than for using excessively sharp criteria and omitting some features. For the position of detected objects, the coordinates of the center of gravity of the feature determined by polyras (option polygon locator) were assumed. To estimate the accuracy of the coordinate determined automatically, a manual comparison was done. The standard deviation of the coordinates’ differences equalled S x,y = ±0.32 pixel size, which corresponded to 1÷2 mm in the object scale. The achieved accuracy is sufficient for diagnosis of posture defects. In the analysis, a IDRISI32 was used.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2006, 16; 415-423
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cyfrowa analiza zdjęcia satelitarnego VHR dla pozyskiwania danych o pokryciu terenu – podejście obiektowe i pikselowe
Digital analysis of VHR satellite image for obtainig land cover data – object and pixel-approach
Autorzy:
Chmiel, J.
Fijałkowska, A.
Woronkiewicz, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/129896.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
pokrycie terenu
klasyfikacja
analiza cyfrowa
zdjęcie satelitarne VHR
podejście obiektowe
land cover
classification
digital analysis
VHR satellite image
object approach
Opis:
Zdjęcia satelitarne o bardzo wysokiej rozdzielczości przestrzennej (VHR) staja się niezastąpionym w wielu zastosowaniach źródłem danych i informacji o powierzchni Ziemi ze względu na wysokie walory interpretacyjne i możliwe do uzyskania dokładności kartometryczne końcowych produktów. Ma to szczególne znaczenie dla aplikacji, gdzie przedmiotem zainteresowania są obszary o złożonej strukturze przestrzennej. Rosnące potrzeby w zakresie pozyskiwania ze zdjęć satelitarnych VHR różnorakich informacji o powierzchni Ziemi, w tym o pokryciu terenu, wymagają jednakże wypracowania bardziej skutecznych i wydajnych metod analizy cyfrowej. W przeciwieństwie do tradycyjnych metod cyfrowej klasyfikacji, które za jednostkę podstawowa przetwarzania (analizy) przyjmują piksel, a zbiór cech wyróżniających definiowany jest zasadniczo w przestrzeni spektralnej, obiektowo zorientowane podejście do analizy pozwala rozszerzyć zbiór cech (wyróżniających obiekty) o elementy związane z tekstura, wielkością, kształtem, szeroko rozumianym sąsiedztwem, kontekstem. Obiektowe podejście często pozwala także w większym stopniu na swego rodzaju obejście pewnych problemów tradycyjnych metod klasyfikacji na poziomie piksela wynikających z wysokiej heterogeniczności wyróżnialnych powierzchni i częstej obecności tzw. statystycznego szumu jako konsekwencji wysokiej rozdzielczość przestrzennej. Wyłonione w wyniku analizy obiekty swoim rozkładem przestrzennym w bardziej naturalny sposób formują obraz rzeczywistości. W niniejszym artykule prezentowane są określone wyniki z zakresu cyfrowej analizy zdjęcia satelitarnego VHR, której celem było pozyskanie danych o pokryciu terenu z wykorzystaniem zarówno pikselowego, jak i obiektowego podejścia do analizy. W pierwszym przypadku zastosowano nadzorowane podejście do klasyfikacji, wykorzystując znane w tym zakresie tradycyjne algorytmy. Podejście obiektowe realizowano w oparciu o funkcjonalność oprogramowania eCognition (Definiens). W tej części istotne było równie włączenie do analizy określonych elementów wiedzy i innych informacji, co miało na celu podniesienie efektywności metody i poprawności końcowych wyników. Określone testy zostały przeprowadzone dla obszaru o zróżnicowanym stopniu złożoności charakterystyki przestrzennej. Dla terenów rolniczych dodatkowo ważne było tak e rozpoznanie upraw. Uzyskane wyniki podkreślają (przy określonych założeniach wstępnych) zalety i ograniczenia zastosowanych podejść i metod, wskazując jednak e pewne widoczne zalety podejścia obiektowego.
Very high resolution satellite images with their valuable photo-interpretation properties and potential high level of geometric accuracy of end products are considered in many applications as a crucial source of data and information about the Earth surface. It is of special importance for such applications in which the area of interest is characterised by complex spatial structure. Growing needs for obtaining diverse categories of information about Earth surface, including land cover, require effective and efficient methods of digital analysis to be worked out. In contrast to traditional methods of digital classification, which use pixel as a reference unit of processing and the frame of discriminating features is basically defined in spectral space, the object-based approach allows to increase the set of discriminating features, including new elements related to texture, size, shape, widely understood neighbourhood, and context. Object-based approach often allows, to a large extent, to avoid some problems of traditional pixel-based classifiers, which result from high level of heterogeneity of identified areas and the frequent presence of so-called statistical noise, which is considered as a consequence of high spatial resolution. The finally created and identified objects in object-based analysis, in their spatial distribution form more natural image of reality. In the present paper, certain results are presented from a range of digital analysis of VHR satellite image, where the main goal was to achieve land cover data applying pixel and object-based approach. In first case, the supervised approach was used with known traditional algorithms. The object-based approach was adopted based on Definiens Professional set of tools. In the latter approach, the essential was also to include certain elements of knowledge and ancillary information with the aim to improve efficiency of the method and accuracy of final results. Given tests were performed for the terrain of diverse levels of spatial complexity. For the rural areas, an important issue was also to recognize the crops. The results showed (with the certain input assumptions) the positive aspects and limitations of applied approaches and methods, pointing at some visible advantages of the object-based approach.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17a; 139-148
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wzmocnienie procesu klasyfikacji obiektowej wielospektralnych ortofotomap lotniczych danymi z lotniczego skanowania laserowego
Enhancing the obia classification of multispectral aerial orthoimages using airborne laser scanning data
Autorzy:
Wężyk, P.
Mlost, J.
Pierzchalski, M.
Wójtowicz-Nowakowska, A.
Szwed, P.
Powiązania:
https://bibliotekanauki.pl/articles/129858.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obiektowa
OBIA
ortofotomapa cyfrowa
lotniczy skaning laserowy
projekt ISOK
object-based image analysis
digital aerial orthophoto
Airborne Laser Scanning
ISOK
Opis:
Klasyfikacja obiektowa (OBIA, ang. Object Based Image Analysis) jest nowatorską metodą analizy zobrazowań teledetekcyjnych, w której homogeniczne obiekty (segmenty), na które podzielony został obraz (za pomocą specyficznych algorytmów) poddawane są klasyfikacji. Dotychczasowe projekty wykazały, iż OBIA przeprowadzana na wysokorozdzielczych i wielospektralnych lotniczych ortofotomapach cyfrowych, wspierana modelami wysokościowymi, prowadzi do uzyskania bardzo dokładnych wyników. Stosunkowo niewiele prac koncentruje się na określeniu wpływu produktów pochodnych chmury punktów lotniczego skanowania laserowego (ang. Airborne Laser Scanning), takich jak wartość: odchylenia standardowego wysokości, gęstości punktów czy intensywności odbicia, na poprawę wyników klasyfikacji OBIA. W prezentowanej pracy poddano ocenie wzmocnienie procesu klasyfikacji OBIA danymi ALS na podstawie dwóch transektów badawczych („A” oraz „B”) o powierzchni 3 km2, położonych w okolicach Włocławka. Celem końcowym procesu analizy OBIA było uzyskanie aktualnej mapy klas pokrycia terenu. W opracowaniu wykorzystano lotnicze ortofotomapy cyfrowe oraz dane z lotniczego skaningu laserowego, pozyskane na przełomie sierpnia I września 2010 roku. Na podstawie punktów danych ALS wygenerowano warstwy pochodne takie jak: liczba odbić, intensywność, odchylenie standardowe, jak również wygenerowano znormalizowany Numeryczny Modelu Powierzchni Terenu (zNMPT). W wariancie pierwszym „I” wykorzystano dane uzyskane wyłącznie w nalocie fotogrametrycznym, tj. wielospektralne ortofotomapy lotnicze (kamera Vexcel) oraz indeksy roślinności (w tym NDVI i in.). Wariant drugi prac ”II” zakładał wykorzystanie dodatkowo danych z lotniczego skaningu laserowego. Określona dokładność klasyfikacji OBIA wykonanej w oparciu o cyfrową ortofotomapę lotniczą wyniosła 91.6% dla transektu badawczego „A” oraz 93.1% dla transektu „B”. Użycie danych ALS spowodowało podniesienie dokładności ogólnej do poziomu 95.0% („A”) oraz 96.9% („B”). Praca wykazała, iż zastosowanie danych ALS podnosi dokładność klasyfikacji segmentów o bardzo zbliżonych właściwościach spektralnych (np. rozróżnienie powierzchni dużych, płaskich dachów budynków od parkingów czy klas roślinności niskiej od średniej i wysokiej. Wprowadzenie warstw pochodnych ALS do procesu segmentacji poprawia także kształt powstających obiektów a tym samym klas końcowych. Analiza „surowych” danych ALS w postaci plików w formacie LAS otwiera dodatkowe możliwości, których nie daje wykorzystywanie rastrowych warstw takich jak zNMPT. Pojawiająca się w nowej wersji oprogramowania eCognition (TRIMBLE) możliwość operowania segmentami przestrzennymi jeszcze te możliwości klasyfikacji podnosi. Niewątpliwie sporym problemem w integracji informacji spektralnej (ortoobraz) oraz geometrycznej (ALS) jest efekt rzutu środkowego skutkujący przesunięciami radialnymi dla wysokich obiektów leżących w znacznej odległości od punktu głównego zdjęcia.
Object Based Image Analysis (OBIA) is an innovative method of analyzing remote sensing data based not on the pixels, but on homogenous features (segments) generated by specific algorithms. OBIA based on high-resolution aerial orthophotography and powered by digital terrain models (nDSM) brings high accuracy analysis. Not many scientific papers brings implementation of ALS point cloud directly into OBIA image processing. Paper present study done on two test areas of approx. 3 km2, situated close to Wloclawek, representing different land use classes (transect “A” – urban area; transect “B” – rural and forest landscape). Geodata (digital aerial orthophotographs and Airborne Laser Scanning data) were captured almost at the same time (September 2010). Different raster layers were created from *. LAS file, like: intensity, number of returns, normalized elevation (nDSM). Two version (I and II) of OBIA classification were performed. First version (I) based only on aerial orthophotographs and different coefficients (like NDVI). Second variant of OBIA (wariant II) based additionally on ALS data. Total accuracy of variant I was 94.1% (transect “A”) and 92.6% (transect “B”). OBIA classification powered by ALS data provide to increase of the results up to 96.9% (transect “A”) and 95.0% (transect “B”) as well. Classification of objects with similar type of surface properties (like buildings and bare soil) was much better using ALS information. The ALS data improve also the shape of objects, that there are more realistic. Data fusion in OBIA processing brings new capabilities,. These capabilities are bigger thanks to processing based on 3-dimensional segments. The results of analysis would be more accurate, when orthoimages (“true ortho”) would be used, instead of standard orthophotographs. The running ISOK project in Poland will bring soon a huge data set (approx. 150 TB) of ALS and photogrammetry connected products. This situation requires suitable software to analyze it fast and accurate on the full automatic way. The OBIA classification seems to be a solution for such challenge.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 23; 467-476
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mapa zagrożenia erozyjnego gruntów rolnych w Małopolsce na podstawie klasyfikacji OBIA obrazów teledetekcyjnych oraz analiz przestrzennych GIS
The map of agricultural land erosion risk assesment of Malopolska voivodeship (Poland) based on OBIA of remotely sensed data and GIS spatial analyses
Autorzy:
Wężyk, P.
Drzewiecki, W.
Wójtowicz-Nowakowska, A.
Pierzchalski, M.
Mlost, J.
Szafrańska, B.
Powiązania:
https://bibliotekanauki.pl/articles/130620.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
erozja wodna gleb
mapa glebowo-rolnicza
analiza obiektowa obrazu
RapidEye
model USLE
analiza przestrzenna GIS
water soil erosion
digital soil map
object oriented image analysis
USLE model
GIS spatial analysis
Opis:
Zjawisko erozji wodnej należy do głównych przyczyn degradacji gleb w Europie. Stanowi ono również główny czynnik degradujący gleby na obszarze Małopolski - regionu o najwyższym stopniu zagrożenia erozyjnego w skali Polski. Występując lokalnie, w zależności od warunków fizjograficznych, może stanowić poważny problem gospodarczy i środowiskowy. Silne zróżnicowanie fizjograficzne oraz różne formy pokrycia i użytkowania terenu województwa małopolskiego, stanowiły główną potrzebę przeprowadzenia oceny zagrożenia erozyjnego i nasilenia stopnia degradacji gleb. Projekt realizowany dla Urzędu Marszałkowskiego Województwa Małopolskiego miał na celu identyfikację obszarów, które w największym stopniu narażone są na degradację(erozję potencjalną, czyli taką, jaka miałaby miejsce na polu użytkowanym jako czarny ugór bez stosowania zabiegów przeciwerozyjnych oraz erozję aktualną, czyli z uwzględnieniem aktualnej struktury użytkowania i stosowanych zabiegów przeciwerozyjnych) przez co w pierwszej kolejności wymagają wdrożenia skutecznych metod ochrony gleb użytkowanych rolniczo. W projekcie wykorzystano wysokorozdzielcze zobrazowania satelitarne systemu RapidEye z lat 2010-2011 oraz cyfrowe ortofotomapy lotnicze (RGB). Dane teledetekcyjne poddano zaawansowanej technologicznie klasyfikacji obiektowej (ang. OBIA - Object Based Image Analysis) w oprogramowaniu eCognition (Trimble Geospatial) wspartej analizami przestrzennymi GIS. Ocenę nasilenia erozyjnej degradacji gleb województwa małopolskiego przeprowadzono w oparciu o modelowanie z wykorzystaniem algorytmu USLE (ang. Universal Soil Loss Equation). Jest to najszerzej rozpowszechniony na świecie model erozyjny. W latach 90-tych XX wieku powstała nowa (zmodyfikowana) wersja modelu do określania erozji gleb, tj. (R)USLE. Ocena zagrożenia gleb województwa małopolskiego w aspekcie erozji potencjalnej wykazała, iż jedynie 15% powierzchni terenów użytkowanych rolniczo w województwie nie jest w zasadzie zagrożone erozją wodną. Na obszarze 28.6% terenów rolnych występuje natomiast potencjalnie średnie lub większe zagrożenie erozyjne - mogące skutkować trwałą degradacją profilu glebowego. Tereny zagrożone występują w największym nasileniu w południowej - górzystej części województwa. Ocena przeprowadzona w aspekcie erozji aktualnej pokazuje jednocześnie, iż rzeczywisty aktualny poziom zagrożenia erozyjnego jest znacznie niższy od potencjalnego. Ponad 40% terenów rolniczych nie jest obecnie narażonych na występowanie zjawisk erozji wodnej gleb, a erozja na poziomie średnim lub wyższym stwierdzana jest dla 10% powierzchni tych obszarów. Oznacza to, iż sposób prowadzenia gospodarki rolnej w znacznym stopniu ogranicza występowanie zjawisk erozyjnych. Podsumowując w przypadku województwa małopolskiego zagrożenie erozyjne użytków rolnych należy ocenić jako średnio-wysokie i dość mocno zróżnicowane terytorialnie. Zastosowana metodyka prac poza dużą oszczędnością czasu jaką przyniosła klasyfikacja obiektowa (OBIA) wykazała także możliwość wykorzystania modelu erozji (R)USLE dla jednostek administracyjnych o znacznej powierzchni, takich jak: powiat czy województwo.
In 2011 the Marshal Office of Malopolska Voivodeship decide to evaluate the vulnerability of soils to water erosion for the entire region. The special work-flow of geoinformation technologies was used to fulfil this goal. First of all, the soil map had to be updated to include changes in land use and land cover which took place since 1960s, when most of them were made. The process of soil map updating had to be realised with very high degree of automation, because of the large area to be mapped (ca. 15 000 km sq.) and limited time period (ca. 3 months for complete erosion risk assessment). The approach used was based on the Object Based Image Analysis (OBIA) of orthophotomaps from both high resolution satellite images (RapidEye) and digital aerial photographs and applied GIS spatial analyses. Soil map with up-to-date land use and land cover information, together with rainfall data, detailed Digital Elevation Model and statistical information about areas sown with particular crops created the input information for erosion modelling in GIS environment. Soil erosion risk assessment was based on (R)USLE approach. Both, the potential and the actual soil erosion risk were assessed quantificatively and qualitatively. The soil erosion risk assessment for Malopolska Voivodeship showed that only 15% of the agricultural land in the region is generally free of the risk of water erosion. For the 28.6% of agricultural land the potential medium or higher risk of erosion exist - which can result in permanent degradation of the soil profile. The study was presented in forms of digital thematic maps and reports prepared for the entire area of Malopolska Voivodeship and each administrative district as well.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 24; 403-420
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies