Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ACCESS model" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Development of models to study traffic accidents on the final sections of access roads to the cities: a case study of three major Iranian cities
Autorzy:
Fallah Tafti, Mehdi
Roshani, Reza
Powiązania:
https://bibliotekanauki.pl/articles/1955155.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
traffic accidents
city access roads
entrance roads
traffic safety
accident prediction model
neural networks
wypadki drogowe
drogi dojazdowe do miasta
drogi wjazdowe
bezpieczeństwo na drodze
modele przewidywania wypadków
sieci neuronowe
Opis:
The final sections of main access roads to the cities require especial attention as the frequency of accidents in these road sections are considerably higher than other parts of interurban roads. These road sections operate as an interface between the rural roads and urban streets. The previous researches available on this subject are limited and they have also mainly focused on a narrow range of factors contributing to the accidents in these areas. The main contribution of this research is to consider a relatively comprehensive range of potential factors , and to examine their impacts through the development and comparison of both conventional probabilistic models and Artificial Neural Network (ANN) models. For this purpose, information related to the main access roads of three major Iranian cities were collected. This information consisted of accident frequency data together with the field observations of traffic characteristics, roadway conditions and roadside features of these roads. Various ANN and probabilistic models were developed. The frequency of accidents, i.e. fatal, injured, or damaged accidents, was considered as the output of the developed models. The results indicated that a hybrid of ANN models, each comprised of 10 input variables representing traffic, roadway and roadside conditions, outperformed several probabilistic models, i.e. Poisson, Negative binomial, Zero-truncated Poisson, and Zero-truncated Negative Binomial models, also developed under similar conditions in this study. Moreover, effective roadway width, roadway lighting condition, the standard deviation of vehicles speed, percentage of drivers violating the speed limit, average annual daily traffic, percentage of heavy goods vehicles, the density of roadside commercial and industrial land uses, the density of median U-turns, the density of local access roads, and the effective width of the left-side shoulder were identified as the most effective factors contributing to the accidents in these areas. The developed ANN model can be used as a tool to predict accident rates in these road sections, and to estimate a potential reduction in the accident rates, following any improvements in the major factors contributing to the traffic accidents in these areas.
Źródło:
Archives of Transport; 2021, 59, 3; 129-148
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies