Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gao, Song" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Research on driving behavior decision making system of autonomous driving vehicle based on benefit evaluation model
Autorzy:
Wang, Pengwei
Gao, Song
Li, Liang
Cheng, Shuo
Zhao, Hailan
Powiązania:
https://bibliotekanauki.pl/articles/223910.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
autonomous driving vehicle
decision making model
finite state machine
lane change decision
Opis:
Autonomous driving vehicle could increase driving efficiency, reduce traffic congestion and improve driving safety, it is considered as the solution of current traffic problems. Decision making systems for autonomous driving vehicles have significant effects on driving performance. The performance of decision making system is affected by its framework and decision making model. In real traffic scenarios, the driving condition of autonomous driving vehicle faced is random and time-varying, the performance of current decision making system is unable to meet the full scene autonomous driving requirements. For autonomous driving vehicle, the division between different driving behaviors needs clear boundary conditions. Typically, in lane change scenario, multiple reasonable driving behavior choices cause conflict of driving state. The fundamental cause of conflict lies in overlapping boundary conditions. To design a decision making system for autonomous driving vehicles, firstly, based on the decomposition of human driver operation process, five basic driving behavior modes are constructed, a driving behavior decision making framework for autonomous driving vehicle based on finite state machine is proposed. Then, to achieve lane change decision making for autonomous driving vehicle, lane change behavior characteristics of human driver lane change maneuver are analyzed and extracted. Based on the analysis, multiple attributes such as driving efficiency and safety are considered, all attributes benefits are quantified and the driving behavior benefit evaluation model is established. By evaluating the benefits of all alternative driving behaviors, the optimal driving behavior for current driving scenario is output. Finally, to verify the performances of the proposed decision making model, a series of real vehicle tests are implemented in different scenarios, the real time performance, effectiveness, and feasibility performance of the proposed method is accessed. The results show that the proposed driving behavior decision making model has good feasibility, real-time performance and multi-choice filtering performance in dynamic traffic scenarios.
Źródło:
Archives of Transport; 2020, 53, 1; 21-36
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Driving energy management of front-and-rear-motor-drive electric vehicle based on hybrid radial basis function
Autorzy:
Sun, Binbin
Zhang, Tiezhu
Ge, Wenqing
Tan, Cao
Gao, Song
Powiązania:
https://bibliotekanauki.pl/articles/224152.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
electric vehicle
drive
energy management
optimization
torque distribution
predictive model
hardware test
pojazd elektryczny
napęd
zarządzanie energią
optymalizacja
moment obrotowy
model predykcyjny
Opis:
This paper presents mathematical methods to develop a high-efficiency and real-time driving energy management for a front-and-rear-motor-drive electric vehicle (FRMDEV), which is equipped with an induction motor (IM) and a permanent magnet synchronous motor (PMSM). First of all, in order to develop motor-loss models for energy optimization, database of with three factors, which are speed, torque and temperature, was created to characterize motor operation based on HALTON sequence method. The response surface model of motor loss, as the function of the motor-operation database, was developed with the use of Gauss radial basis function (RBF). The accuracy of the motor-loss model was verified according to statistical analysis. Then, in order to create a two-factor energy management strategy, the modification models of the torque required by driver (Td) and the torque distribution coefficient (β) were constructed based on the state of charge (SOC) of battery and the motor temperature, respectively. According to the motor-loss models, the fitness function for optimization was designed, where the influence of the non-work on system consumption was analyzed and calculated. The optimal β was confirmed with the use of the off-line particle swarm optimization (PSO). Moreover, to achieve both high accuracy and real-time performance under random vehicle operation, the predictive model of the optimal β was developed based on the hybrid RBF. The modeling and predictive accuracies of the predictive model were analyzed and verified. Finally, a hardware-in-loop (HIL) test platform was developed and the predictive model was tested. Test results show that, the developed predictive model of β based on hybrid RBF can achieve both real-time and economic performances, which is applicable to engineering application. More importantly, in comparison with the original torque distribution based on rule algorithm, the torque distribution based on hybrid RBF is able to reduce driving energy consumption by 9.51% under urban cycle.
Źródło:
Archives of Transport; 2019, 49, 1; 47-58
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robust trajectory tracking control for autonomous vehicle subject to velocity-varying and uncertain lateral disturbance
Autorzy:
Wang, Yuqiong
Gao, Song
Wang, Yuhai
Wang, Pengwei
Zhou, Yingchao
Xu, Yi
Powiązania:
https://bibliotekanauki.pl/articles/1833621.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
autonomous vehicle
path tracking
velocity tracking
active disturbance rejection control
robustness
Opis:
Autonomous vehicles are the most advanced intelligent vehicles and will play an important role in reducing traffic accidents, saving energy and reducing emission. Motion control for trajectory tracking is one of the core issues in the field of autonomous vehicle research. According to the characteristics of strong nonlinearity, uncertainty and changing longitudinal velocity for autonomous vehicles at high speed steering condition, the robust trajectory tracking control is studied. Firstly, the vehicle system models are established and the novel target longitudinal velocity planning is carried out. This velocity planning method can not only ensure that the autonomous vehicle operates in a strong nonlinear coupling state in bend, but also easy to be constructed. Then, taking the lateral location deviation minimizing to zero as the lateral control objective, a robust active disturbance rejection control path tracking controller is designed along with an extended state observer which can deal with the varying velocity and uncertain lateral disturbance effectively. Additionally, the feed for ward-feedback control method is adopted to control the total tire torque, which is distributed according to the steering characteristics of the vehicle for additional yaw moment to enhance vehicle handing stability. Finally, the robustness of the proposed controller is evaluated under velocity-varying condition and sudden lateral disturbance. The single-lane change maneuver and double-lane change maneuver under vary longitudinal velocity and different road adhesions are both simulated. The simulation results based on Matlab/Simulink show that the proposed controller can accurately observe the external disturbances and have good performance in trajectory tracking and handing stability. The maximum lateral error reduces by 0.18 meters compared with a vehicle that controlled by a feedback-feedforward path tracking controller in the single-lane change maneuver. The lateral deviation is still very small even in the double lane change case of abrupt curvature. It should be noted that our proposed control algorithm is simple and robust, thus provide great potential for engineering application.
Źródło:
Archives of Transport; 2021, 57, 1; 7-23
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies