Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "storage system" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Analysis of the reliability of photovoltaic-microwind based hybrid power system with battery storage for optimized electricity generation at Tlemcen, north west Algeria
Autorzy:
Hadjidj, Mohammed Salim
Bibi-Triki, Nacereddine
Didi, Faouzi
Powiązania:
https://bibliotekanauki.pl/articles/240901.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
modeling
optimization
simulation
photovoltaic system
wind system
hybrid photovoltaic-wind-storage system
sizing
modelowanie
optymalizacja
symulacja
system fotowoltaiczny
wymiarowanie
Opis:
This article considers designing of a renewable electrical power generation system for self-contained homes away from conventional grids. A model based on a technique for the analysis and evaluation of two solar and wind energy sources, electrochemical storage and charging of a housing area is introduced into a simulation and calculation program that aims to decide, based on the optimized results, on electrical energy production system coupled or separated from the two sources mentioned above that must be able to ensure a continuous energy balance at any time of the day. Such system is the most cost-effective among the systems found. The wind system adopted in the study is of the low starting speed that meets the criteria of low winds in the selected region under study unlike the adequate solar resource, which will lead to an examination of its feasibility and profitability to compensate for the inactivity of photovoltaic panels in periods of no sunlight. That is a system with fewer photovoltaic panels and storage batteries whereby these should return a full day of autonomy. Two configurations are selected and discussed. The first is composed of photovoltaic panels and storage batteries and the other includes the addition of a wind system in combination with the photovoltaic system with storage but at a higher investment cost than the first. Consequently, this result proves that is preferable to opt for a purely photovoltaic system supported by the storage in this type of site and invalidates the interest of adding micro wind turbines adapted to sites with low wind resources.
Źródło:
Archives of Thermodynamics; 2019, 40, 1; 161-185
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation and simulation based optimization of an energy storage system with pressurized air
Autorzy:
Hübner, Dirk Herbert
Grün, Sebastian
Molter, Jan
Powiązania:
https://bibliotekanauki.pl/articles/1955053.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
renewable energy
pressurized air
storage system
efficiency study
simulation based investigation
simulation based optimization
Opis:
As a central goal of the energy transition in Germany, the share of renewable energies is to be increased to over 80% by 2050. Due to fluctuating wind conditions or the day-night cycle, storage systems must be integrated into the supply grid for a continuous regenerative power supply from wind and solar energy. In addition to pumped storage systems, batteries and Power2Gas approaches, compressed gases (optimally air) can also be used for this purpose. The aim of the research and development project presented is to develop such a storage unit with the best possible efficiency and long service life. To this end, basic calculations were first made on possible efficiencies depending on the assumed changes in the state of the working gas. Furthermore a piston compressor for compressed air generation was investigated experimentally with regard to its efficiency. In addition, the compressor was modelled and simulated in a corresponding software. Thus, on the one hand, the efficiency of the existing piston compressor could be determined experimentally and, on the other hand, the simulation model could be assessed with regard to its suitability for the purpose of simulation-based optimization. Measures to increase efficiency can be derived from the results. In addition, it becomes possible to forecast the achievable overall efficiency of such an energy storage system with compressed air.
Źródło:
Archives of Thermodynamics; 2021, 42, 4; 183-200
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Thermodynamic analysis of cycle arrangements of the coal-fired thermal power plants with carbon capture
Autorzy:
Kindra, Vladimir Olegovich
Milukov, Igor Alexandrovich
Shevchenko, Igor Vladimirovich
Shabalova, Sofia Igorevna
Kovalev, Dmitriy Sergeevich
Powiązania:
https://bibliotekanauki.pl/articles/1955057.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
combined cycle power plant
carbon capture
storage system
precombustion capture
post-combustion capture
oxy-fuel combustion
Opis:
The electricity production by combustion of organic fuels, especially coal, increases the atmospheric CO2 content, which contributes to global warming. The greenhouse gas emissions by the power production industry may be reduced by the application of CO2 capture and storage systems, but it remarkably decreases the thermal power plant (TPP) efficiency because of the considerable increase of the auxiliary electricity requirements. This paper describes the thermodynamic analysis of a combined cycle TPP with coal gasification and preliminary carbon dioxide capture from the syngas. Utilization of the heat produced in the fuel preparation increases the TPP net efficiency from 42.3% to 47.2%. Moreover, the analysis included the combined cycle power plant with coal gasification and the CO2 capture from the heat recovery steam generator exhaust gas, and the oxy-fuel combustion power cycle with coal gasification. The coal-fired combined cycle power plant efficiency with the preliminary CO2 capture from syngas is 0.6% higher than that of the CO2 capture after combustion and 9.9% higher than that with the oxy-fuel combustion and further CO2 capture. The specific CO2 emissions are equal to 103 g/kWh for the case of CO2 capture from syngas, 90 g/kWh for the case of CO2 capture from the exhaust gas and 9 g/kWh for the case of oxy-fuel combustion.
Źródło:
Archives of Thermodynamics; 2021, 42, 4; 103-121
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Thermodynamic analysis of an innovative steam turbine power plant with oxy-methane combustors
Autorzy:
Kindra, Vladimir Olegovich
Osipov, Sergey Konstantinovich
Zlyvko, Olga Vladimirovna
Shcherbatov, Igor Alexandrovich
Sokolov, Vladimir Petrovich
Powiązania:
https://bibliotekanauki.pl/articles/1955067.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Combined cycle power plant
carbon capture
storage system
precombustion capture
post-combustion capture
oxy-fuel combustion
Opis:
The Rankine cycle steam turbine power plants make a base for world electricity production. The efficiency of modern steam turbine units is not higher than 43–45%, which is remarkably lower compared to the combined cycle power plants. However, an increase in steam turbine power plant efficiency could be achieved by the rise of initial cycle parameters up to ultra-supercritical values: 700–780◦C, 30–35 MPa. A prospective steam superheating technology is the oxy-fuel combustion heating in a sidemounted combustor located in the steam pipelines. This paper reviews thermal schemes of steam turbine power plants with one or two side-mounted steam superheaters. An influence of the initial steam parameters on the facility thermal efficiency was identified and primary and secondary superheater parameters were optimized. It was found that the working fluid superheating in the side-mounted oxy-methane combustors leads to an increase of thermal efficiency higher than that with the traditional boiler superheating in the initial temperature ranges of 700–780◦C and 660–780◦C by 0.6% and 1.4%, respectively.
Źródło:
Archives of Thermodynamics; 2021, 42, 4; 123-140
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A concrete heat accumulator for use in solar heating systems - a mathematical model and experimental verification
Autorzy:
Sacharczuk, J.
Taler, D.
Powiązania:
https://bibliotekanauki.pl/articles/240260.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
heat storage
solar heating system
control volume finite element method
akumulowanie ciepła
kolektor słoneczny
Opis:
The article presents a numerical model of the concrete heat accumulator for solar heating systems. Model uses control volume finite element method with an explicit solution method for time integration. The use of an explicit method is an essential advantage in the simulation of time-dependent changes in temperature of the air at the accumulator inlet. The study compares the results of numerical model calculations of the accumulator heating with experimental measurements and with computational fluid dynamics modeling. The comparison shows a good correlation between the results of calculation using the model and the results of measurements.
Źródło:
Archives of Thermodynamics; 2014, 35, 3; 281-295
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimal coefficient of the share of cogeneration in the district heating system cooperating with thermal storage
Autorzy:
Ziębik, A.
Gładysz, P.
Powiązania:
https://bibliotekanauki.pl/articles/240214.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
elektrociepłownia
kogeneracja
sieć ciepłownicza
współczynnik udziału kogeneracji
zasobnik ciepła
coefficient of the share of cogeneration
cogeneration
combined heat and power plant
district heating system
thermal storage
Opis:
The paper presents the results of optimizing the coefficient of the share of cogeneration expressed by an empirical formula dedicated to designers, which will allow to determine the optimal value of the share of cogeneration in contemporary cogeneration systems with the thermal storages feeding the district heating systems. This formula bases on the algorithm of the choice of the optimal coefficient of the share of cogeneration in district heating systems with the thermal storage, taking into account additional benefits concerning the promotion of high-efficiency cogeneration and the decrease of the cost of CO2 emission thanks to cogeneration. The approach presented in this paper may be applicable both in combined heat and power (CHP) plants with back-pressure turbines and extraction-condensing turbines.
Źródło:
Archives of Thermodynamics; 2011, 32, 3; 71-87
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies