Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "compressor map" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Neural network approach to compressor modelling with surge margin consideration
Autorzy:
Loryś, Sergiusz Michał
Orkisz, Marek
Powiązania:
https://bibliotekanauki.pl/articles/2091364.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
modelling
compressor map
neural-network
Opis:
Artificial neural networks are gaining popularity thank to their fast and accurate response paired with low computing power requirements. They have been proven as a method for compressor performance prediction with satisfactory results. In this paper a new approach of artificial neural networks modelling is evaluated. The auxiliary parameter of ‘relative stability margin Z’ was introduced and used in learning process. This approach connects two methods of compressor modelling such as neural networks and auxiliary parameter utilization. Two models were created, one with utilization of the ‘relative stability margin Z’ as a direct indication of surge margin of any estimated condition, and other with standard compressor parameters. The results were compared by determination of fitting, interpolation and extrapolation capabilities of both approaches. The artificial neural networks used during the process was a two-layer feed-forward neural-network with Levenberg–Marquardt algorithm with Bayesian regularization. The experimental data was interpolated to increase the amount of learning data for the neural network. With the two models created, capabilities of this relatively simple type of neural-network to approximate compressor map was also assessed.
Źródło:
Archives of Thermodynamics; 2022, 43, 1; 89--108
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Development of flow and efficiency characteristics of an axial compressor with an analytical method including cooling air extraction and variable inlet guide vane angle
Autorzy:
Trawiński, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/1955039.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
axial compressor
compressor characteristics
compressor map
IGV
bleed air
Opis:
The development of a reliable mathematical model of an axial compressor requires applying flow and efficiency characteristics. This approach provides performance parameters of a machine depending on varying conditions. In this paper, a method for developing characteristics of an axial compressor is presented, based on general compressor maps available in the literature or measurement data from industrial facilities. The novelty that constitutes the core of this article is introducing an improved method describing the performance lines of an axial compressor with the modified ellipse equation. The proposed model is extended with bleed air extraction for the purposes of cooling the blades in the expander part of the gas turbine. The variable inlet guide vanes angle is also considered using the vane angle correction factor. All developed dependencies are fully analytical. The presented approach does not require knowledge of machine geometry. The set of input parameters is based on reference data. The presented approach makes it possible to determine the allowed operating area and study the machine’s performance in variable conditions. The introduced mathematical correlations provide a fully analytical study of optimum operating points concerning the chosen criterion. The final section presents a mathematical model of an axial compressor built using the developed method. A detailed study of the exemplary flow and efficiency characteristics of an axial compressor operating with a gas turbine is also provided.
Źródło:
Archives of Thermodynamics; 2021, 42, 4; 17-46
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies