Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Loryś, Sergiusz Michał" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Neural network approach to compressor modelling with surge margin consideration
Autorzy:
Loryś, Sergiusz Michał
Orkisz, Marek
Powiązania:
https://bibliotekanauki.pl/articles/2091364.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
modelling
compressor map
neural-network
Opis:
Artificial neural networks are gaining popularity thank to their fast and accurate response paired with low computing power requirements. They have been proven as a method for compressor performance prediction with satisfactory results. In this paper a new approach of artificial neural networks modelling is evaluated. The auxiliary parameter of ‘relative stability margin Z’ was introduced and used in learning process. This approach connects two methods of compressor modelling such as neural networks and auxiliary parameter utilization. Two models were created, one with utilization of the ‘relative stability margin Z’ as a direct indication of surge margin of any estimated condition, and other with standard compressor parameters. The results were compared by determination of fitting, interpolation and extrapolation capabilities of both approaches. The artificial neural networks used during the process was a two-layer feed-forward neural-network with Levenberg–Marquardt algorithm with Bayesian regularization. The experimental data was interpolated to increase the amount of learning data for the neural network. With the two models created, capabilities of this relatively simple type of neural-network to approximate compressor map was also assessed.
Źródło:
Archives of Thermodynamics; 2022, 43, 1; 89--108
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies