Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "energy performance" wg kryterium: Wszystkie pola


Wyświetlanie 1-10 z 10
Tytuł:
A comprehensive review on energy and exergy analysis of solar air heaters
Autorzy:
Ghritlahre, Harish Kumar
Sahu, Piyush Kumar
Powiązania:
https://bibliotekanauki.pl/articles/240351.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
solar energy
energy
exergy analysis
solar air heater
thermal performance
Opis:
For economic growth of nation, the energy plays an important role. The excessive use of fossil fuels results the increase in global warming and depleting the resources. Due to this reason, the renewable energy sources are creating more attraction for researchers. In renewable energy sector, solar energy is the most abundant and clean source of energy. In solar thermal systems, solar air heater (SAH) is the main system which is used for heating of air. As it is simple in construction and cheaper in cost, it is of main interest for the researchers. The concept of first law and second law of thermodynamics is used for the study of the energy and exergy analysis respectively. The energy analysis is of great importance for the study of process effectiveness while the exergetic analysis is another significant concept to examine the actual behavior of process involving various energy losses and internal irreversibility. For efficient utilization of solar energy, the exergy analysis is very important tool for optimal design of solar air heaters. The aim of the present work is to review the works related to energy and exergy analysis of various types of solar air heaters and to find out the research gap for future work.
Źródło:
Archives of Thermodynamics; 2020, 41, 3; 183-222
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of D-shaped, reverse D-shaped and U-shaped turbulators in solar air heater on thermo-hydraulic performance
Autorzy:
Ghildyal, Abhishek
Bisht, Vijay Singh
Bhandari, Prabhakar
Rawat, Kamal Singh
Powiązania:
https://bibliotekanauki.pl/articles/27312225.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
CFD
renewable energy
solar air heater
turbulence kinetic energy
thermo-hydraulic performance
Opis:
As the cost of fuel rises, designing efficient solar air heaters (SAH) becomes increasingly important. By artificially roughening the absorber plate, solar air heaters’ performance can be augmented. Turbulators in different forms like ribs, delta winglets, vortex generators, etc. have been introduced to create local wall turbulence or for vortex generation. In the present work, a numerical investigation on a solar air heater has been conducted to examine the effect of three distinct turbulators (namely D-shaped, reverse D- and U-shaped) on the SAH thermo-hydraulic performance. The simulation has been carried out using the computational fluid dynamics, an advanced and modern simulation technique for Reynolds numbers ranging from 4000 to 18000 (turbulent airflow). For the purpose of comparison, constant ratios of turbulator height/hydraulic diameter and pitch/turbulator height, of 0.021 and 14.28, respectively, were adopted for all SAH configurations. Furthermore, the fluid flow has also been analyzed using turbulence kinetic energy and velocity contours. It was observed that the U-shaped turbulator has the highest value of Nusselt number followed by D-shaped and reverse D-shaped turbulators. However, in terms of friction factor, the D-shaped configuration has the highest value followed by reverse D-shaped and U-shaped geometries. It can be concluded that among all SAH configurations considered, the U-shaped has outperformed in terms of thermohydraulic performance factor.
Źródło:
Archives of Thermodynamics; 2023, 44, 2; 3--20
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of artificial coarseness on the performance of rectangular solar air heater duct: a comparative study
Autorzy:
Dubey, Manoj Kumar
Prakash, Om
Powiązania:
https://bibliotekanauki.pl/articles/27312238.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
solar energy
artificial
coarseness
heat transfer coefficient
thermo-hydraulic performance
friction factor
Opis:
Solar air heater is regarded as the most common and popular solar thermal system and has a wide range of applications, from residential to industrial. Solar air heater is not viable because of the low convective heat transfer coefficient at the absorber plate which contributes to decreasing the thermal efficiency. Artificial coarseness on the plain surface is the most effective method to enhance heat transfer with a moderate rate of friction factor of flowing air in the design of solar air heater duct. The different parameters and different artificial coarseness are responsible to alter the flow structure and heat transfer rate. Over the years different artificial roughness and how its geometry affects the performance of solar air heater have been thoroughly studied. Various investigators report the correlations between heat transfer and friction factors. In the present study, a comparison of several artificial coarseness geometries and methods with a view to enhancing the performance of solar air heater has been made. A brief outline has also been presented for future research.
Źródło:
Archives of Thermodynamics; 2023, 44, 3; 325--358
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance analysis and PCM selection for adsorption chiller aided by energy storage supplied from the district heating system
Autorzy:
Karwacki, Jarosław
Kwidziński, Roman
Leputa, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2204066.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
thermal sorption cooling
phase change material
thermal energy storage
district heating
adsorption
energy management
mathematical modelling
load shifting
efficiency
Opis:
The paper presents a theoretical analysis of thermal energy storage filled with phase change material (PCM) that is aimed at optimization of an adsorption chiller performance in an air-conditioning system. The equations describing a lumped parameter model were used to analyze internal heat transfer in the cooling installation. Those equations result from the energy balances of the chiller, PCM thermal storage unit and heat load. The influence of the control of the heat transfer fluid flow rate and heat capacity of the system components on the whole system operation was investigated. The model was used to validate the selection of Rubitherm RT62HC as a PCM for thermal storage. It also allowed us to assess the temperature levels that are likely to appear during the operation of the system before it will be constructed.
Źródło:
Archives of Thermodynamics; 2022, 43, 4; 135--169
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine
Autorzy:
Ma, Z.
Chen, H.
Zhang, Y.
Powiązania:
https://bibliotekanauki.pl/articles/240819.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
energy efficiency design index
energy efficiency operational indicator
waste heat recovery system
performance analysis
reduction factor
wskaźnik efektywności energetycznej
wskaźniki eksploatacyjny efektywności energetycznej
system odzysku ciepła odpadowego
analiza wydajności
współczynnik redukcyjny
Opis:
The increase of ship’s energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.
Źródło:
Archives of Thermodynamics; 2017, 38, 3; 63-75
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Thermal performance evaluation of an earth-to-air heat exchanger for the heating mode applications using an experimental test rig
Autorzy:
Ahmad, Saif Nawaz
Prakash, Om
Powiązania:
https://bibliotekanauki.pl/articles/2091363.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
heat transfer
earth-to-air heat exchanger
ground heat exchanger
geothermal energy
renewable energy
assive heating
assive cooling
effectiveness
Opis:
This paper presents the experimental investigation of an earth-to-air heat exchanger for heating purposes in the Patna region of India, using an experimental test rig. In the view of the author, real field experiments have several limitations such as lack of repeatability and uncontrolled conditions. It also takes more time for the response of parameters that depends on nature and climate. Moreover, earth-to-air heat exchangers may be expensive to fabricate and require more land area. Thus, in this work authors executed their experimental work in indoor controllable environments to investigate the thermal performance of an earth-to-air heat exchanger. The actual soil conditions were created and maintained the temperature at 26°C throughout the soil in the vicinity of pipes. Three horizontal PVC pipes of equal lengths and diameters of 0.0285 m, 0.038 m and 0.0485 m were installed in the test rig. The experiments were performed for different inlet air velocities at ambient air temperature. This study acknowledges that the maximum rise in outlet temperature occurs at a lower speed for smaller pipes. Also, the maximum effectiveness of 0.83 was observed at 2 m/s for the smallest diameter pipe.
Źródło:
Archives of Thermodynamics; 2022, 43, 1; 185--207
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance of a combined cycle power plant due to auxiliary heating from the combustion chamber of the gas turbine topping cycle
Autorzy:
Khan, Mohammad Nadeem
Powiązania:
https://bibliotekanauki.pl/articles/1845501.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
pressure ratio
air-fuel ratio
supplement heating
exergy analysis
energy analysis
Opis:
Energy demand is increasing exponentially in the last decade. To meet such demand there is an urgent need to enhance the power generation capacity of the electrical power generation system worldwide. A combined-cycle gas turbines power plant is an alternative to replace the existing steam/gas electric power plants. The present study is an attempt to investigate the effect of different parameters to optimize the performance of the combined cycle power plant. The input physical parameters such as pressure ratio, air fuel ratio and a fraction of combustible product to heat recovery heat exchanger via gas turbine were varied to determine the work output, thermal efficiency, and exergy destruction. The result of the present study shows that for maximum work output, thermal efficiency as well as total exergy destruction, extraction of combustible gases from the passage of the combustion chamber and gas turbine for heat recovery steam generator is not favorable. Work output and thermal efficiency increase with an increase in pressure ratio and decrease in air fuel ratio but for minimum total exergy destruction, the pressure ratio should be minimum and air fuel ratio should be maximum.
Źródło:
Archives of Thermodynamics; 2021, 42, 1; 147-162
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research and development of a high-performance oxy-fuel combustion power cycle with coal gasification
Autorzy:
Kindra, Vladimir
Rogalev, Andrey
Zlyvko, Olga
Sokolov, Vladimir
Milukov, Igor
Powiązania:
https://bibliotekanauki.pl/articles/1955073.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
carbon dioxide
Oxy-fuel combustion
Gasification
energy efficiency
thermodynamic analysis
Opis:
Recent climate changes stimulate the search and introduction of solutions for the reduction of the anthropogenic effect upon the environment. Transition to the oxy-fuel combustion power cycles is an advanced method of CO2 emission reduction. In these energy units, the main fuel is natural gas but the cycles may also work on syngas produced by the solid fuel gasification process. This paper discloses a new highly efficient oxy-fuel combustion power cycle with coal gasification, which utilizes the syngas heat in two additional nitrogen gas turbine units. The cycle mathematics simulation and optimization result with the energy unit net efficiency of 40.43%. Parametric studies of the cycle show influence of the parameters upon the energy unit net efficiency. Change of the cycle fuel from natural gas to coal is followed by a nearly twice increase of the carbon dioxide emission from 4.63 to 9.92 gmCO2/kWh.
Źródło:
Archives of Thermodynamics; 2021, 42, 4; 155-168
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance analysis of a lithium-ion battery of an electric vehicle under various driving conditions
Autorzy:
Dhawan, Shreya
Sabharwal, Aanhal
Shreya, Shreya
Gupta, Aarushi
Parvez, Yusuf
Powiązania:
https://bibliotekanauki.pl/articles/27312215.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
clean energy
lithium-ion battery
discharge rate
voltage
EV
supermileage
environment
Opis:
Conventional fuels are the primary source of pollution. Switching towards clean energy becomes increasingly necessary for sustainable development. Electric vehicles are the most suitable alternative for the future of the automobile industry. The battery, being the power source, is the critical element of electric vehicles. However, its charging and discharging rates have always been a question. The discharge rate depends upon various factors such as vehicle load, temperature gradient, surface inclination, terrain, tyre pressure, and vehicle speed. In this work, a 20 Ah, 13S-8P configured lithium-ion battery, developed specifically for a supermileage custom vehicle, is used for experimentation. The abovementioned factors have been analyzed to check the vehicle’s overall performance in different operating conditions, and their effects have been investigated against the battery’s discharge rate. It has been observed that the discharge rate remains unaffected by the considered temperature difference. However, overheating the battery results in thermal runaway, damaging and reducing its life. Increasing the number of brakes to 15, the impact on the discharge rate is marginal; however, if the number of brakes increases beyond 21, a doubling trend in voltage drops was observed. Thus, a smoother drive at a slow-varying velocity is preferred. Experiments for different load conditions and varying terrains show a rise in discharge with increasing load, low discharge for concrete, and the largest discharge for rocky terrain.
Źródło:
Archives of Thermodynamics; 2023, 44, 3; 143--160
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The performance of H2O, R134a, SES36, ethanol, and HFE7100 two-phase closed thermosyphons for varying operating parameters and geometry
Autorzy:
Andrzejczyk, R.
Muszyński, T.
Powiązania:
https://bibliotekanauki.pl/articles/240401.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
two-phase closed thermosiphon
heat pipe
energy efficiency
NTU
number of heat transfer units
heat recovery
zamknięty termosyfon dwufazowy
rura cieplna
efektywność energetyczna
liczba jednostek przepływu ciepła
odzysk ciepła
Opis:
In this study, the influences of different parameters at performance two-phase closed thermosiphon (TPCT) was presented. It has been confirmed that the working fluid, as well as operating parameters and fill ratio, are very important factors in the performance of TPCT. The article shows characteristics of gravitational tube geometries, as well as the technical characteristic of the most important system components, i.e., the evaporator/condenser. The experiment’s plan and the results of it for the two-phase thermosiphon for both evaluated geometries with varying thermal and fluid flow parameters are presented. Experiments were performed for the most perspective working fluids, namely: water, R134a, SES36, ethanol and HFE7100. Obtained research proves the possibility to use TPCT for heat recovery from the industrial waste water.
Źródło:
Archives of Thermodynamics; 2017, 38, 3; 3-21
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies