Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "współczynnik naprężeń" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Sub-level stoping in an underground limestone quarry: an analysis of the state of stress in an evolutionary scenario
Wybieranie podpoziomowe wapienia w podziemnych kamieniołomach: analiza stanów naprężeń w scenariuszu rozwojowym
Autorzy:
Cardu, M.
Dipietromaria, S.
Oreste, P.
Powiązania:
https://bibliotekanauki.pl/articles/220245.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
eksploatacja podziemna
wybieranie podpoziomowe
stan naprężeń i odkształceń
współczynnik bezpieczeństwa
modelowanie numeryczne
metoda wybierania
underground exploitation
sub-level stoping
stress-strain conditions
safety factor
numerical modelling
mining method
Opis:
The aim of this study was to evaluate the state of stress of a „voids-pillar“ structure excavated by means of the sub-level stoping method in an underground limestone quarry near Bergamo (Italy). Both the current structure of the quarry (i.e. the rooms exploited till now) and a possible future scenario were analysed using the (FDM) FLAC 2D code. The quarry has been in operation since 1927; at present, exploitation is carried out underground via the sub-level stoping method. Exploitation involves two levels, with 5 rooms on the upper level and 9 rooms on the lower level. After analysing data obtained from laboratory and in situ tests carried out on rock samples and natural discontinuities, the geomechanical properties of the medium, knowledge of which is essential in order to establish the parameters that must be included in the numerical model, were evaluated. The implementation of three numerical models made it possible to study both the present conditions of quarry exploitation and the evolution of the exploited rooms, as well as a possible expansion involving a third level of rooms. Using the results obtained regarding the stress-strain present in the pillars, a potential change in room geometry was proposed aimed at reducing the stress state inside the pillars, decreasing plasticity and increasing overall quarry safety.
Celem pracy było zbadanie stanów naprężeń w strukturach składających się z filarów i pustek po wybieraniu wapienia w podziemnym kamieniołomie w pobliżu Bergamo (Włochy), metodą wybierania podpoziomowego. Zarówno obecna struktury kamieniołomu (komory powstałe po dotychczasowym wydobyciu) oraz możliwe scenariusze na przyszłość przeanalizowano przy użyciu kodu (FDM) FLAC 2D. Eksploatacja kamieniołomu trwa od 1972, w chwili obecnej wydobycie odbywa się pod ziemią, metodą wybierania podpoziomowego, na dwóch poziomach wybierania: 5 komór na poziomie wyższym i 9 komór – na niższym. Po analizie danych uzyskanych drogą testów laboratoryjnych oraz badania w terenie próbek skalnych i stref nieciągłości, określono właściwości geomechaniczne ośrodka niezbędne do obliczenia parametrów do modelu numerycznego. Implementacja trzech modeli numerycznych umożliwiła analizę zarówno obecnych warunków eksploatacji kamieniołomu, procesów zachodzących w wyeksploatowanych komorach, jak i projektowanie ewentualnego rozszerzenia wydobycia, w tym powstanie trzeciego poziomu. Wykorzystując otrzymane zależności naprężeń i odkształceń, zaproponowano zmiany w geometrii komór mające na celu obniżenie poziomu naprężeń w filarach, zmniejszenie ich podatności i ogólne podniesienie stanu bezpieczeństwa w kamieniołomie.
Źródło:
Archives of Mining Sciences; 2016, 61, 1; 199-216
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The law of effective stress for rocks in light of results of laboratory experiments
Prawo naprężeń efektywnych dla skał w świetle wyników badań laboratoryjnych
Autorzy:
Nowakowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/219996.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
prawo naprężeń efektywnych
konwencjonalne naprężenie efektywne
równanie ciśnienia efektywnego
wartość ciśnienia efektywnego
teoria Biota
współczynnik Biota
test ściśliwości
test trójosiowego ściskania
effective stress law
conventional effective stress law
effective pressure equation
effective pressure value
Biot theory
Biot coefficient
compressibility test
triaxial compression test
Opis:
This paper presents the results of laboratory tests carried out in order to formulate effective stress law. The law was sought for two different cases: first - when rock was treated as a porous Biot medium (Biot, 1941; Nur & Byerlee, 1971) and second - when the law was formulated according to definition of Robin (1973) developed by Gustkiewicz (1990) and Nowakowski (2007). In the first case coefficents (4) and (5) of the Biot equation (3) were were determined on the basis of compressibility test, in the second one effective pressure equation (9) and effective pressure value (11) were found on the basis of results of so called individual triaxial compression test (see Kovari et al., 1983) according to the methodology given by Nowakowski (2007). On the basis of Biot coefficients set of values was found that volumetric strain of the pore space described by a coefficient (5) was not dependent on the type of pore fluid and the pore pressure of only, while in case of volumetric strain of total rock described by coefficient (4) both the structure and texture of rock were important. The individual triaxial compression test results showed that for tested rock an effective pressure equation was a linear function of pore pressure as (15). The so called Rebinder effect (Rehbinder & Lichtman, 1957) might cause, that the α coefficient in equation (15) could assume values greater than one. This happened particularly in the case when the porous fluid was non-inert carbon dioxide. In case of inert pore fluid like kerosene the test results suggested that the a coefficient in equation (15) decreased while the differential strength limit was increasing. This might be caused by, so called, dillatancy strengthening (see Zoback & Byerlee, 1975). Another considered important parameter of the equation (15) was the value of the effective press p'. The results showed that the value of this parameter was practically independend on the pore fluid type. This conclusion was contrary to previous research (see, for example, Gustkiewicz et al., 2003 and Gustkiewicz, 1990) so these results should be treated with caution. There are no doubts, however, over p' increasing simultaneously with increase in Rσ1-σ3. Basically, the differential strength limit of the specimen is greater the greater is confining pressure applied to it. Thus, higher Rσ1-σ3 values are accompanied by higher p'.
W artykule przedstawiono wyniki badań laboratoryjnych wykonanych w celu sformułowania prawa naprężeń efektywnych, które prowadzono dla dwóch różnych sposobów formułowania tego prawa. W pierwszym przypadku zakładano, że skała jest ośrodkiem porowatym Biota (Biot, 1941; Nur i Byerlee, 1971), a samo prawo naprężeń efektywnych ma postać (3). W drugim przypadku posługiwano się podejściem zaproponowanym przez Robina (1973), które zostało następnie rozwinięte w Pracowni Odkształceń Skał IMG PAN m.in. przez Gustkiewicza (1990) i Nowakowskiego (2007) i wyznaczano prawo naprężeń efektywnych składające się z dwóch elementów: równania ciśnienia efektywnego (9) oraz wartości ciśnienia efektywnego (11). Podstawą wyznaczania współczynników dla równania Biota (3) były testy ściśliwości próbek skał pozostających w stanie powietrznie suchym oraz nasyconych inertnymi (azot, nafta) bądź sorbującymi (dwutlenek węgla, woda destylowana) płynami porowymi. Na podstawie wyników tych testów wyznaczano moduły ściśliwości badanych skał a następnie wyliczano wartości współczynników Biota wg (4) i (5). Przedmiotem badań były próbki z naprężeń dwóch skał oznaczonych jako piaskowiec 8348 i wapień 9166. Równanie ciśnienie efektywnego (9) oraz wartość ciśnienia efektywnego (11) wyznaczano wg metodyki podanej przez Nowakowskiego (2007) na podstawie wyników testu klasycznego trójosiowego ściskania (ang. „individual test” - por. Kovari i in., 1983) uzyskanych dla próbek skał, w których naprężenie różnicowe osiągnęło wartość różnicowej granicy wytrzymałości Rσ1-σ3. Przedmiotem badań były próbki wycięte ze skały oznaczonej jako piaskowiec „Tumlin”, a jako płynów porowych użyto azotu i nafty (płyny inertne) oraz dwutlenku węgla i wody destylowanej (płyny sorbujące). Z przedstawionych wyników badań nad wartościami współczynników Biota wynika, że rodzaj płynu porowego nie wpływa na wartość wyznaczanego według wzoru (5) współczynnika α2 co oznacza, że deformacja objętościowa tej przestrzeni nie zależy od rodzaju płynu porowego, a jedynie od panującego w niej ciśnienia. W przypadku współczynnika α1 (wzór (4)) określającego wpływ ciśnienia porowego na deformację ośrodka jako całości wyniki wykazują pewną sprzeczność. Wartości α1 uzyskane dla piaskowca gdy płynem porowym jest nieściśliwa ciecz są nieco większe niż gdy jest nim ściśliwy gaz. Z kolei wyniki uzyskane dla opoki wskazują na coś wręcz przeciwnego: stosunkowo duża (większa niż dla piaskowca) wartość α1 dla gazu i wyraźnie mniejsze wartości α1 dla cieczy. Ostatecznie wydaje się, że to, czy wartość współczynnika α1 zależy rodzaju medium porowego jest w dużym stopniu uwarunkowane strukturą i teksturą badanej skały. Dla skał okruchowych o dużej porowatości i dużej swobodzie filtracji płynu porowego rodzaj tego płynu będzie miał prawdopodobnie mniejsze znaczenie natomiast dla skał zwartych o małej porowatości mogą zachodzić duże różnice w wartościach tego współczynnika w zależności od tego czy medium porowym jest ciecz, czy gaz. Wyniki wykonanych testów konwencjonalnego trójosiowego ściskania pozwoliły stwierdzić, że dla badanego piaskowca równanie ciśnienia efektywnego na granicy wytrzymałości jest liniową funkcją ciśnienia porowego pp postaci (15). Zgodnie z tym co pokazali Gustkiewicz i in. (2004) oraz Nowakowski (2005, 2007) jeżeli oddziaływanie płynu porowego na skałę nie jest wyłącznie mechaniczne, to może dojść do sytuacji, w której współczynnik α w równaniu (15) ma wartość większą od 1. Zjawiskiem fizykochemicznym odpowiedzialnym za taką sytuację jest najprawdopodobniej tzw. efekt Rebindera (Rehbinder i Lichtman, 1957), który polega na obniżeniu wytrzymałości skały wskutek adsorpcji gazu porowego, przy czym spadek wytrzymałości jest tym większy, im wyższa jest ilość zasorbowanego gazu (por. także Hołda, 1990). Jeżeli płynem porowym jest CO2 to im wyższa wartość Rσ1-σ3 tym wyższa wartość α, czyli tym silniej manifestuje się wpływ ciśnienia porowego (rys. 6). Przyczyn takiego zjawiska należy prawdopodobnie upatrywać w sposobie pękania badanego materiału. Jak wiadomo różnicowa granica wytrzymałości rośnie ze wzrostem ciśnienia okólnego oraz ze wzrostem różnicy p - pp (Gustkiewicz, 1990). Wzrostowi temu towarzyszy stopniowa zmiana sposobu pękania skały od kruchego pękania do ciągliwego płynięcia. W próbce pękającej krucho wytwarza się zazwyczaj jedna płaszczyzna pęknięcia, wzdłuż której następuje zniszczenie próbki. Natomiast w próbce pękającej w sposób ciągliwy powstaje wiele równoległych do siebie płaszczyzn zniszczenia. Oznacza to, że sumaryczna powierzchnia nowych spękań powstających podczas zniszczenia ciągliwego jest prawdopodobnie znacznie większa niż podczas kruchego pęknięcia. Jeśli w trakcie eksperymentu spełnione są warunki (6) to pęknięcia te zostają wypełnione pozostającym pod stałym ciśnieniem gazem porowym, a to z kolei oznacza wzrost powierzchni fizykochemicznie czynnej, na której mogą zachodzić procesy sorpcyjne. A zatem i wpływ efektów sorpcyjnych powinien się okazać dla wyższych wartości Rσ1-σ3 znacząco większy. W przypadku, gdy płynem porowym była inertna ciecz (nafta) pokazane na rys. 6 wyniki badań sugerują, że wartość współczynnika α maleje ze wzrostem Rσ1-σ3. Przyczyną może tu być tzw. Wzmocnienie dylatancyjne (por. Zoback i Byerlee, 1975). W tym przypadku polega ono na tym, że gdy próbka skalna osiąga swoja granicę wytrzymałości zaczynają się w niej rozwijać nowe spękania, czego konsekwencją jest wzrost objętości przestrzeni porowej wywołujący spadek ciśnienia porowego. Jeżeli spadek ten nie zostanie wyrównany przez filtrującą z zewnątrz ciecz to rzeczywista wartość ciśnienia porowego będzie niższa niż zakładana. Z punktu widzenia prawa ciśnienia efektywnego oznacza to, że wpływ ciśnienia porowego na wartość Rσ1-σ3. ulegnie zmniejszeniu, co powinno dać α < 1. Drugim istotnym parametrem równania (15) jest tzw. wartość ciśnienia efektywnego p'. W rozważanych eksperymentach wielkość tę należy traktować jako pewne zastępcze ciśnienie okólne, które - zastosowane do skały dla pp = 0 - da w efekcie taka samą wartość Rσ1-σ3 jak para niezerowych ciśnień p i pp spełniających równanie (15). Pokazane na rys. 7 zależności sugerują, że wartość wielkości p' praktycznie nie zależy od rodzaju płynu porowego. Innymi słowy: jeśli pp = 0 to Rσ1-σ3 = const. dla danej wartości p' niezależnie od tego, czym wypełniona jest przestrzeń porowa skały. Wartości p' rosną natomiast ze wzrostem Rσ1-σ3 gdyż różnicowa granica wytrzymałości próbki jest tym wyższa im wyższe jest obciążające próbkę ciśnienie okólne. Jest zatem naturalne, że wyższym wartościom Rσ1-σ3 towarzyszą wyższe wartości p'.
Źródło:
Archives of Mining Sciences; 2012, 57, 4; 1027-1044
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies