Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "wizualizacja wielowymiarowa" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
The use of the visualisation of multidimensional data using PCA to evaluate possibilities of the division of coal samples space due to their suitability for fluidised gasification
Zastosowanie wizualizacji wielowymiarowych danych za pomocą PCA do oceny możliwości podziału próbek węgla ze względu na ich przydatność do zgazowania
Autorzy:
Jamróz, D.
Niedoba, T.
Surowiak, A.
Tumidajski, T.
Powiązania:
https://bibliotekanauki.pl/articles/219788.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
analiza PCA
wizualizacja wielowymiarowa
zgazowanie węgla
wzbogacanie w osadzarkach
principal component analysis (PCA)
multidimensional visualisation
coal gasification
jigging
Opis:
Methods serving to visualise multidimensional data through the transformation of multidimensional space into two-dimensional space, enable to present the multidimensional data on the computer screen. Thanks to this, qualitative analysis of this data can be performed in the most natural way for humans, through the sense of sight. An example of such a method of multidimensional data visualisation is PCA (principal component analysis) method. This method was used in this work to present and analyse a set of seven-dimensional data (selected seven properties) describing coal samples obtained from Janina and Wieczorek coal mines. Coal from these mines was previously subjected to separation by means of a laboratory ring jig, consisting of ten rings. With 5 layers of both types of coal (with 2 rings each) were obtained in this way. It was decided to check if the method of multidimensional data visualisation enables to divide the space of such divided samples into areas with different suitability for the fluidised gasification process. To that end, the card of technological suitability of coal was used (Sobolewski et al., 2012; 2013), in which key, relevant and additional parameters, having effect on the gasification process, were described. As a result of analyses, it was stated that effective determination of coal samples suitability for the on-surface gasification process in a fluidised reactor is possible. The PCA method enables the visualisation of the optimal subspace containing the set requirements concerning the properties of coals intended for this process.
Proces zgazowania węgla jest jedną z technologii, które zyskują coraz szerszą uwagę wśród technologów zajmujących się jego przeróbką i utylizacją. Ze względu na typ zgazowania wyróżnia się dwa główne sposoby: zgazowanie naziemne i podziemne. Każdy z tych typów można jednak przeprowadzić za pomocą różnych technologii. W przypadku zgazowania naziemnego, jedną z takich technologii jest zgazowanie w reaktorze fluidalnym. Do tego typu zgazowania zostały opracowane wytyczne w ramach projektu NCBiR nr 23.23.100.8498/R34 pt. „Opracowanie technologii zgazowania węgla dla wysokoefektywnej produkcji paliw i energii” w ramach strategicznego programu badań naukowych i prac rozwojowych pt. „Zaawansowane technologie pozyskiwania energii” (Marciniak-Kowalska, 2011-12; Sobolewski et al., 2012; 2013; Strugała et al., 2011; 2012). Autorzy wybrali główne z tych wytycznych, dotyczących zalecanych poziomów określonych cech węgla. W celu zbadania węgla pod kątem ich przydatności do zgazowania pobrano próbki dwóch węgli: pochodzących z Zakładu Górniczego Janina oraz z Kopalni Węgla Kamiennego Wieczorek. Każdy z tych węgli został poddany procesowi wzbogacania w laboratoryjnej osadzarce pierścieniowej (10 pierścieni, węgiel w klasach wydzielonych z przedziału 0-18 mm). Po zakończeniu procesu rozdziału materiał podzielono na 5 warstw (po 2 pierścienie) i każdy z nich rozsiano na sitach na 10 klas ziarnowych, ustalając wychody warstw i klas. Następnie, tak otrzymane produkty – klasy ziarnowe, po wydzieleniu analitycznych próbek, poddano chemicznej analizie elementarnej i technicznej węgla, w celu scharakteryzowania właściwości wpływających na procesy zgazowania. Łącznie z obu kopalń uzyskano 99 próbek (50 z kopalni Janina oraz 49 z kopalni Wieczorek – w jednej z warstw nie uzyskano klasy 16-18 mm) charakteryzowanych przez następujące parametry: zawartość siarki całkowitej, zawartość wodoru, zawartość azotu, zawartość chloru, zawartość węgla całkowitego, ciepło spalania oraz zawartość popiołu. Przykładowe dane dla jednej z otrzymanych warstw przedstawiono w tabeli 1. Dodatkowo wykorzystano kartę przydatności technologicznej węgla (Sobolewski et al., 2012; 2013), w której opisano parametry kluczowe, istotne oraz dodatkowe, mające wpływ na proces zgazowania. Na jej podstawie oznaczono próbki węgla, które w sposób efektywny poddają się procesowi zgazowania. W celu wizualizacji danych zastosowano jedną z nowoczesnych metod wielowymiarowej statystycznej analizy czynnikowej – metodę PCA (ang. Principal Component Analysis). W metodzie tej dokonuje się rzutu prostopadłego wielowymiarowych danych na płaszczyznę reprezentowaną przez specjalnie wybrane wektory V1,V2. Są to wektory własne, odpowiadające dwóm największym (co do modułu) wartościom własnym macierzy kowariancji zbioru obserwacji. Opisany dobór wektorów V1,V2 pozwala uzyskać obraz na płaszczyźnie prezentujący najwięcej zmienności danych. Algorytm i zasady tej metody zostały szczegółowo zaprezentowane w podrozdziale 3 artykułu. Za pomocą metody PCA dokonano trzech typów analiz. Pierwszy obraz miał na celu rozpoznanie, czy możliwa jest identyfikacja pochodzenia węgla, czyli rozdział węgla pochodzącego z ZG Janina od węgla z KWK Wieczorek. Odpowiedź była twierdząca. Na tak przygotowane dane narzucono następnie warunki wynikające z nałożenia wymogów określonych w karcie przydatności technologicznej węgla. Okazało się, że przy wzięciu pod uwagę wszystkich warunków jedynie 17 próbek z ZG Janina i zaledwie jedna z KWK Wieczorek spełnia wszystkie kryteria, co przedstawiono na rysunku 2. Stwierdzono, że dzieje się tak głównie z powodu zawartości chloru, która wykracza poza nałożone limity. Cecha ta nie wpływa jednak w kluczowy sposób na sam proces zgazowania a istotna jest ze względu na aspekt ochrony środowiska. Dlatego dokonano podobnej analizy, ale przy odrzuceniu warunku dotyczącego tej cechy. Po odrzuceniu wymogów dotyczących zawartości chloru okazało się, że 37 próbek z ZG Janina oraz 41 próbek z KWK Wieczorek spełnia pozostałe zalecenia odnośnie naziemnego zgazowania w reaktorze fluidalnym. Jest to potwierdzenie wcześniejszych obserwacji autorów w tym zakresie. W obu przypadkach wizualizacja wielowymiarowa przy użyciu PCA pozwoliła stwierdzić, że obrazy punktów reprezentujących próbki węgla bardziej podatnego na zgazowanie oraz mniej przydatnego do zgazowania zajmują osobne podobszary przestrzeni oraz gromadzą się w skupiskach, które można łatwo od siebie odseparować. Stwierdzono więc, że metoda PCA pozwala podzielić przestrzeń próbek na obszary o różnej przydatności do procesu zgazowania fluidalnego zarówno gdy przyjęto ograniczenie dotyczące zawartości chloru jak i przy jego pominięciu. Zastosowanie metody PCA w celu identyfikacji przydatności próbek węgla do zgazowania jest nowatorskie i nie było wcześniej stosowane. Istnieje możliwość zastosowania również innych metod w tym zakresie. Należy jednak podkreślić, że niewątpliwą zaletą metody PCA jest fakt, że w trakcie wizualizacji nie ma konieczności doboru żadnych parametrów w przeciwieństwie do wielu innych metod wizualizacji wielowymiarowych danych.
Źródło:
Archives of Mining Sciences; 2016, 61, 3; 523-535
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of multi-parameter data visualization by means of multidimensional scaling to evaluate possibility of coal gasification
Wykorzystanie wizualizacji wielowymiarowych danych przy użyciu skalowania wielowymiarowego do oceny możliwości zgazowania węgla
Autorzy:
Jamróz, D.
Niedoba, T.
Surowiak, A.
Tumidajski, T.
Szostek, R.
Gajer, M.
Powiązania:
https://bibliotekanauki.pl/articles/219920.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
zgazowanie węgla
wizualizacja wielowymiarowa
skalowanie wielowymiarowe
MDS
wielowymiarowe dane
wzbogacanie w osadzarkach
coal gasification
multidimensional visualization
multidimensional scaling
multidimensional data
Opis:
The application of methods drawing upon multi-parameter visualization of data by transformation of multidimensional space into two-dimensional one allow to show multi-parameter data on computer screen. Thanks to that, it is possible to conduct a qualitative analysis of this data in the most natural way for human being, i.e. by the sense of sight. An example of such method of multi-parameter visualization is multidimensional scaling. This method was used in this paper to present and analyze a set of seven-dimensional data obtained from Janina Mining Plant and Wieczorek Coal Mine. It was decided to examine whether the method of multi-parameter data visualization allows to divide the samples space into areas of various applicability to fluidal gasification process. The “Technological applicability card for coals” was used for this purpose [Sobolewski et al., 2012; 2013], in which the key parameters, important and additional ones affecting the gasification process were described.
Metody służące do wizualizacji złożonych, wielowymiarowych danych poprzez transformację przestrzeni wielowymiarowej do dwuwymiarowej umożliwiają prezentację tych danych na ekranie komputera. Tym samym są przystępnym instrumentem analizy zbiorów danych, pozwalającym wykorzystać połączenie naszego wzroku z mocą naszej osobistej sieci neuronowej (mózgu) do wyodrębnienia z danych cech, których zauważenie przy pomocy innych metod może być bardzo trudne. W artykule zastosowano jedną z takich metod – skalowanie wielowymiarowe – w celu sprawdzenia, skuteczności tej metody do analizy próbek węgla ze względu na jego przydatność do procesu zgazowania w kotle fluidalnym. W tym celu pobrano próbki dwóch węgli, z KWK „Wieczorek” (węgiel typu 32) oraz ZG „Janina” (węgiel typu 31.2), które następnie miały być poddane testom pod względem ich przydatności do zgazowania. Każda z próbek została zbadana ze względu na cechy, których określone poziomy są kluczowe oraz wskazane w kontekście procesu zgazowania według „Karty przydatności węgli do zgazowania” (Sobolewski et al., 2012; 2013). Każdy z węgli został rozdzielony na osadzarce pierścieniowej (10 pierścieni, uziarnienie węgla 0-18 mm) w wyniku czego powstało pięć warstw (po 2 pierścienie każda). Następnie każda z warstw została rozsiana na 10 klas ziarnowych. Tak otrzymane produkty zostały poddane technicznej oraz chemicznej analizie (ogółem 50 próbek z ZG „Janina” oraz 49 próbek z KWK „Wieczorek” – klasa ziarnowa 16-18 mm w tej drugiej kopalni nie została uzyskana i pomiar był niemożliwy do zrealizowania. Tym samym otrzymano takie parametry do analizy jak: zawartość siarki, zawartość wodoru, zawartość azotu, zawartość chloru, zawartość węgla organicznego, ciepło spalania oraz zawartość popiołu. W wyniku przeprowadzonych badań oraz porównania ich z wymogami prezentowanymi w „Karcie przydatności węgli do zgazowania” okazało się, że tylko 18 próbek spełnia wszystkie wymogi, z czego aż 17 pochodziło z KWK „Wieczorek”. Postanowiono poddać ocenie wszystkie próbki bardziej złożonej obserwacji – wielowymiarowej analizie danych za pomocą skalowania wielowymiarowego. W rozdziale 3 przedstawiono szczegółowo zastosowaną metodologię analizy wraz z opisem algorytmu. Następnie, w rozdziale 4 przedstawiono wyniki obserwacji przeprowadzonych za pomocą opracowanego w tym celu programu komputerowego, napisanego w języku C++. Rysunki 1-3 przedstawiają sytuację, gdzie dane reprezentujące próbki węgla mniej lub bardziej przydatne do zgazowania zaczynają tworzyć podgrupy. Proces grupowania został przedstawiony etapowo, tzn. rys. 1 prezentuje sytuację wyjściową, Rys. 2 sytuację przy bardzo małej wartości parametru ITER = 5, zaś Rys. 3 najlepszy możliwy widok, otrzymany przy wartości parametru ITER = 340. Widać na tym rysunku, że obrazy punktów reprezentujących próbki węgla bardziej oraz mniej podatnego na zgazowanie zajmują osobne podobszary. Widać, że na całym obszarze rysunku, podobszary te można łatwo od siebie odseparować. Przez to możemy na podstawie tego rysunku stwierdzić, że skalowanie wielowymiarowe pozwala podzielić przestrzeń próbek na obszary o różnej przydatności do procesu zgazowania fluidalnego. Dzięki temu analizując następne, nieznane próbki możemy poprzez ich wizualizację zakwalifikować je do grupy bardziej podatnych na zgazowanie lub mniej podatnych na zgazowanie. Ważne jest to szczególnie dlatego, ponieważ w analizowanej sytuacji próbki węgla bardziej podatnego na zgazowanie zajmują wnętrze siedmiowymiarowego prostopadłościanu – co jest znacznym uproszczeniem. Wynika to bezpośrednio z faktu, iż przyjęte warunki określające przynależność do tej grupy („Karta przydatności Technologicznej węgla”) to proste nierówności przy pomocy których łatwo można sprawdzić taką przynależność. W rzeczywistości, może się jednak okazać, że obszar przynależności może mieć znacznie bardziej skomplikowany kształt. Wtedy na podstawie większej ilości próbek, których przynależność do klasy węgla bardziej podatnego na zgazowanie zostanie stwierdzona empirycznie, można będzie próbować przy pomocy skalowania wielowymiarowego uzyskać podział przestrzeni na obszary reprezentujące próbki węgla bardziej oraz mniej podatnego na zgazowanie. Rys. 4 przedstawia podobny podział, ale bez wzięcia pod uwagę parametru „zawartość chloru”. Również i w tym przypadku próbki węgla mniej lub bardziej podatnego na zgazowanie tworzą wyraźne podgrupy. Przy pominięciu parametru „zawartość chloru” już 78 próbek (37 z ZG „Janina” oraz 41 z KWK „Wieczorek”) z analizowanych 99-ciu spełniałoby wymogi zawarte w „Karcie przydatności węgla do zgazowania”. Rys. 5 przedstawia inne podejście do analizowanych próbek węgla. Tym razem za kryterium podziału przyjęto pochodzenie węgla z KWK „Wieczorek” lub ZG „Janina”, bez rozpatrywania ich w kontekście przydatności do zgazowania. Również i tym razem okazało się, że zastosowana metodologia pozwala stwierdzić możliwość efektywnego rozdzielenia, a tym samym prawidłowego rozpoznania analizowanych próbek węgla. Tym samym dowiedziono, że metoda skalowania wielowymiarowego może być bardzo przydatnym narzędziem podczas wieloparametrycznej analizy próbek różnego typu węgli.
Źródło:
Archives of Mining Sciences; 2017, 62, 3; 445-457
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies