Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sztuczne Sieci Neuronowe" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Effect of rock properties on ROP modeling using statistical and intelligent methods: a case study of an oil well in southwest of Iran
Badanie wpływu właściwości skał na prędkość wiercenia przy zastosowaniu metod statystycznych i inteligentnych: studium przypadku: szyb naftowy w południowo-zachodniej części Iranu
Autorzy:
Bezminabadi, S. N.
Ramezanzadeh, A.
Jalali, S. M. E.
Tokhmechi, B.
Roustaei, A.
Powiązania:
https://bibliotekanauki.pl/articles/219768.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
prędkość wiercenia
właściwości skał
metoda wielokrotnej regresji nieliniowej
sztuczne sieci neuronowe
ROP
rock properties
MNR
ANN
Opis:
Rate of penetration (ROP) is one of the key indicators of drilling operation performance. The estimation of ROP in drilling engineering is very important in terms of more accurate assessment of drilling time which affects operation costs. Hence, estimation of a ROP model using operational and environmental parameters is crucial. For this purpose, firstly physical and mechanical properties of rock were derived from well logs. Correlation between the pair data were determined to find influential parameters on ROP. A new ROP model has been developed in one of the Azadegan oil field wells in southwest of Iran. The model has been simulated using Multiple Nonlinear Regression (MNR) and Artificial Neural Network (ANN). By adding the rock properties, the estimation of the models were precisely improved. The results of simulation using MNR and ANN methods showed correlation coefficients of 0.62 and 0.87, respectively. It was concluded that the performance of ANN model in ROP prediction is fairly better than MNR method.
Prędkość wiercenia jest jednym z podstawowych parametrów charakteryzujących tempo prac wiertniczych. Oszacowanie prędkości wiercenia jest zagadnieniem kluczowym dla inżynierów wiertnictwa, gdyż pozwala na dokładne określenie czasu trwania prac, a co za tym idzie także kosztów operacyjnych. Szacowanie prędkości wiercenia odbywa się na podstawie modelu uwzględniającego parametry pracy oraz parametry środowiskowe. Pierwszy krok obejmuje pozyskanie danych o fizycznych i mechanicznych właściwościach skał na podstawie profilowania geofizycznego otworu. Zastosowano korelację odpowiednich par danych dla pokreślenie wpływu głównych czynników warunkujących prędkość wiercenia. Nowy model obliczania prędkości wiercenia opracowany został w okręgu naftowym Azadegan w południowo-zachodniej części Iranu. Symulacje prowadzono w oparciu o metodę wielokrotnej regresji nieliniowej a także przy wykorzystaniu sztucznych sieci neuronowych. Poprzez dodanie danych o właściwościach skał, model został znacznie udoskonalony. Wyniki symulacji prowadzonych w oparciu o powyższe metody wykazały współczynniki korelacji na poziomie 0.62 i 0.87. Stwierdzono, że metoda wykorzystująca sztuczne sieci neuronowe daje dokładniejsze szacunki prędkości wiercenia niż podejście bazujące wyłącznie na metodzie obliczania regresji nieliniowej
Źródło:
Archives of Mining Sciences; 2017, 62, 1; 131-144
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Condition monitoring of off-highway truck tires at Sungun copper mine using neural networks
Monitorowanie stanu technicznego opon w ciężkich pojazdach terenowych eksploatowanych w kopalni miedzi Sungun, przy użyciu sieci neuronowych
Autorzy:
Moniri Morad, A.
Sattarvand, J.
Powiązania:
https://bibliotekanauki.pl/articles/218962.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
eksploatacja
optymalizacja kosztów
opona ciężarówki
sztuczne sieci neuronowe
maintenance
cost optimization
truck tire
artificial neural networks
Opis:
Maintenance cost of the equipment is one of the most important portions of the operating expenditures in mines; therefore, any change in the equipment productivity can lead to major changes in the unit cost of the production. This clearly shows the importance and necessity of using novel maintenance methods instead of traditional approaches, in order to reach the minimum sudden occurrence of the equipment failure. For instance, the tires are costly components in maintenance which should be regularly inspected and replaced among different axles. The paper investigates the current condition of equipment tires at Sungun Copper Mine and uses neural networks to estimate the wear of the tires. The Input parameters of the network composed of initial tread depth, time of inspection and consumed tread depth by the time of inspection. The output of the network is considered as the residual service time ratio of the tires. The network trained by the feed-forward back propagation learning algorithm. Results revealed a good coincidence between the real and estimated values as 96.6% of correlation coefficient. Hence, better decisions could be made about the tires to reduce the sudden failures and equipment breakdowns.
Koszty użytkowania sprzętu stanowią jedną z najpoważniejszych pozycji w zestawieniu kosztów eksploatacyjnych kopalni, dlatego też każda poprawa wydajności sprzętu powoduje w efekcie zmianę jednostkowego kosztu produkcji. Wyraźnie pokazuje to wagę i konieczność stosowania nowoczesnych metod eksploatacji w miejsce podejścia tradycyjnego w celu minimalizacji ryzyka wystąpienia awarii sprzętu. Przykładowo, opony są elementami kosztownymi w eksploatacji, wymagają regularnego przeglądu i ponownego mocowania na osi. W artykule przebadano stan techniczny opon w maszynach i urządzeniach eksploatowanych w kopalni miedzi Sungun. Przy zastosowaniu metod wykorzystujących sieci neuronowe określano zużycie opon. Parametry wejściowe sieci to początkowa głębokość bieżnika, okres pomiędzy przeglądami, zużycie bieżnika do czasu przeglądu. Parametr wyjściowy to współczynnik określającyczas serwisowania opon. Sieć uczono przy użyciu algorytmu propagacji wstecznej z wyprzedzeniem (feedforward back-propagation algorithm). Uzyskane wyniki wskazują wysoką zbieżność pomiędzy wartościami rzeczywistymi a estymowanymi, współczynnik korelacji kształtuje się na poziomie 96.6%. Umożliwia to podejmowanie lepszych decyzji w odniesieniu do eksploatacji opon, tak by zapobiec nagłym uszkodzeniom i awariom sprzętu.
Źródło:
Archives of Mining Sciences; 2013, 58, 4; 1133-1144
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Safe vibrations of spilling basin explosions at "Gotvand Olya Dam" using artificial neural network
Określanie bezpiecznego poziomu wibracji w zbiorniku w trakcie prac strzałowych prowadzonych na tamie Gotvand Olya z wykorzystaniem sztucznych sieci neuronowych
Autorzy:
Amnieh, H. B.
Bahadori, M.
Powiązania:
https://bibliotekanauki.pl/articles/219884.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
drgania gruntu
bezpieczeństwo prac strzałowych
tama Gotvand Olya
sztuczne sieci neuronowe
ground vibration
safe explosion
Gotvand Olya Dam
artificial neural network (ANN)
Opis:
Ground vibration is an undesirable outcome of an explosion which can have destructive effects on the surrounding environment and structures. Peak Particle Velocity (PPV) is a determining factor in evaluation of the damage caused by an explosion. To predict the ground vibration caused by blasting at the Gotvand Olya Dam (GOD) spilling basin, thirty 3-component records (totally 90) from 19 blasts were obtained using 3 VIBROLOC seismographs. Minimum and the maximum distance from the center of the exploding block to the recording station were set to be 11 and 244 meters, respectively. To evaluate allowable safe vibration and determining the permissible explosive charge weight, Artificial Neural Networks (ANN) was employed with Back Propagation (BP) and 3 hidden layers. The mean square error and the correlation coefficient of the network in this study were found to be 1.95 and 0.995, respectively, which compared to those obtained from the known empirical correlations, indicating substantially more accurate prediction. Considering the network high accuracy and precision in predicting vibrations caused by such blasting operations, the nearest distance from the center of the exploding block at this study was 11 m, and considering the standard allowable vibration of 120 mm/sec for heavy concrete structures, the maximum permissible explosive weight per delay was estimated to be 47.00 Kg. These results could be employed in subsequent safer blasting operation designs.
Wibracje gruntu to niepożądany skutek prowadzenia prac strzałowych, które mogą negatywnie wpływać na otaczające środowisko oraz znajdujące się w sąsiedztwie budowle. Głównym wskaźnikiem używanym przy określaniu szkód spowodowanych przez wybuchy jest wskaźnik maksymalnej prędkości cząstek (PPV). Przy prognozowaniu wibracji terenu wskutek prac strzałowych prowadzonych na tamie Gotvand Olya i w zbiorniku zbadano zapisy 3-składnikowych prędkości ( w sumie 90 zapisów) z 13 wybuchów zarejestrowane przy użyciu sejsmografu 3 VIBROLOC. Maksymalna i minimalna odległość pomiędzy środkiem rozkruszanego bloku a stacją rejestrującą ustawiona została na poziomie 244 i 11 m. W celu określenia bezpiecznego poziomu drgań oraz dopuszczalnej wagi ładunku, zastosowano podejście wykorzystujące sieci neuronowe, z wykorzystaniem metody propagacji wstecznej i trzech warstw ukrytych. Błąd średniokwadratowy i współczynnik korelacji sieci wyniosły 1.95 i 0.95, co pozostaje w zgodności z danym uzyskiwanymi z obserwacji empirycznych, wskazując na poprawność i dokładność prognoz. Zakładając wysoki poziom dokładności sieci oraz wysoką dokładność w prognozowaniu poziomu drgań wywołanych przez prace strzałowe, przyjęto że najbliższa odległość od środka rozkruszanego bloku wyniesie 11 m. Uwzględniając standardowe dopuszczalne w przypadku ciężkich budowli betonowych poziomy drgań w wysokości 120 m/s, oszacowano że maksymalna dopuszczalna masa ładunku wyniesie 47.00 Kg, w przeliczeniu na jeden okres zwłoki. Wyniki badań wykorzystane być mogą w planowaniu kolejnych bezpiecznych prac strzałowych.
Źródło:
Archives of Mining Sciences; 2014, 59, 4; 1087-1096
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Combination of artificial neural networks and numerical modeling for predicting deformation modulus of rock masses
Autorzy:
Tayarani, Narges Saadat
Jamali, Saeed
Zadeh, Mehdi Motevalli
Powiązania:
https://bibliotekanauki.pl/articles/219719.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sztuczne sieci neuronowe
symulacja numeryczna
metoda różnic skończonych
masy skalne
artificial neural networks
numerical simulation
finite difference method
deformation modulus of rock mass
arch dam
Opis:
The deformation modulus of the rock mass as a very important parameter in rock mechanic projects generally is determined by the plate load in-situ tests. While this test is very expensive and time-consuming, so in this study a new method is developed to combin artificial neural networks and numerical modeling for predicting deformation modulus of rock masses. For this aim, firstly, the plate load test was simulated using a Finite Difference numerical model that was verified with actual results of the plate load test in Pirtaghi dam galleries in Iran. Secondly, an artificial neural network is trained with a set of data resulted from numerical simulations to estimate the deformation modulus of the rock mass. The results showed that an ANN with five neurons in the input layer, three hidden layers with 4, 3 and 2 neurons, and one neuron in the output layer had the best accuracy for predicting the deformation modulus of the rock mass.
Źródło:
Archives of Mining Sciences; 2020, 65, 2; 337-346
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of self-heating susceptibility of Indian coal seams – a neural network approach
Ocena skłonności pokładów węgla w Indiach do samozapłonu – podejście oparte o wykorzystanie sieci neuronowych
Autorzy:
Panigrahi, D. C.
Ray, S. K.
Powiązania:
https://bibliotekanauki.pl/articles/219076.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
metoda badania potencjału utleniającego w procesie mokrym
samozapłon
badanie korelacji
sztuczne sieci neuronowe
temperatura przejścia
wet oxidation potential
spontaneous heating
correlation studies
artificial neural network analysis
CPT
Opis:
The paper addresses an electro-chemical method called wet oxidation potential technique for determining the susceptibility of coal to spontaneous combustion. Altogether 78 coal samples collected from thirteen different mining companies spreading over most of the Indian Coalfields have been used for this experimental investigation and 936 experiments have been carried out by varying different experimental conditions to standardize this method for wider application. Thus for a particular sample 12 experiments of wet oxidation potential method were carried out. The results of wet oxidation potential (WOP) method have been correlated with the intrinsic properties of coal by carrying out proximate, ultimate and petrographic analyses of the coal samples. Correlation studies have been carried out with Design Expert 7.0.0 software. Further, artificial neural network (ANN) analysis was performed to ensure best combination of experimental conditions to be used for obtaining optimum results in this method. All the above mentioned analysis clearly spelt out that the experimental conditions should be 0.2 N KMnO4 solution with 1 N KOH at 45°C to achieve optimum results for finding out the susceptibility of coal to spontaneous combustion. The results have been validated with Crossing Point Temperature (CPT) data which is widely used in Indian mining scenario.
W pracy omówiono możliwości wykorzystania metody elektro-chemicznej zwanej metodą określania potencjału utleniającego w procesie mokrym do określania skłonności węgla do samozapłonu. Dla potrzeb eksperymentu zebrano 78 próbek węgla z trzynastu kopalni w obrębie Indyjskiego Zagłębia Węglowego. Przeprowadzono 936 eksperymentów, w różnych warunkach prowadzenia procesu aby zapewnić standaryzację metody w celu jej szerszego zastosowania. Dla każdej próbki przeprowadzono 12 eksperymentów metodą badania potencjału utleniającego w procesie mokrym. Wyniki skorelowano z własnościami danego węgla przez przeprowadzenie badania petrograficznych i wytrzymałościowych parametrów węgla. Procedurę korelacji wykonano z wykorzystaniem oprogramowania Design Expert 7.0.0, następnie przeprowadzono analizę z wykorzystaniem sieci neuronowych w celu opracowania najkorzystniejszej kombinacji warunków eksperymentu do wykorzystania dla uzyskania optymalnych wyników. Badania wykazały, że najkorzystniejsze warunki dla procesu to zastosowanie roztworu 0.2 N KMnO4 z 1 N KOH przy 45°C dla uzyskania optymalnych wyników określania skłonności pokładów do samozapłonu. Walidację wyników przeprowadzono w oparciu o wyniki badania metodą określania temperatury przejścia (Crossing Point Temperature), szeroko stosowaną w przemyśle wydobywczym w Indiach.
Źródło:
Archives of Mining Sciences; 2014, 59, 4; 1061-1076
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of penetration rate of rotary-percussive drilling using artificial neural networks – a case study
Prognozowanie postępu wiercenia przy użyciu wiertła udarowo-obrotowego przy wykorzystaniu sztucznych sieci neuronowych – studium przypadku
Autorzy:
Aalizad, S. A.
Rashidinejad, F.
Powiązania:
https://bibliotekanauki.pl/articles/219500.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
prędkość wiercenia
wiertło obrotowo-udarowe
sztuczne sieci neuronowe
urządzenia udarowe
kopalnia rud żelaza Sangan
penetration rate
rotary-percussive drilling
artificial neural networks
top hammer drilling
Sangan iron mine
Opis:
Penetration rate in rocks is one of the most important parameters of determination of drilling economics. Total drilling costs can be determined by predicting the penetration rate and utilized for mine planning. The factors which affect penetration rate are exceedingly numerous and certainly are not completely understood. For the prediction of penetration rate in rotary-percussive drilling, four types of rocks in Sangan mine have been chosen. Sangan is situated in Khorasan-Razavi province in Northeastern Iran. The selected parameters affect penetration rate is divided in three categories: rock properties, drilling condition and drilling pattern. The rock properties are: density, rock quality designation (RQD), uni-axial compressive strength, Brazilian tensile strength, porosity, Mohs hardness, Young modulus, P-wave velocity. Drilling condition parameters are: percussion, rotation, feed (thrust load) and flushing pressure; and parameters for drilling pattern are: blasthole diameter and length. Rock properties were determined in the laboratory, and drilling condition and drilling pattern were determined in the field. For create a correlation between penetration rate and rock properties, drilling condition and drilling pattern, artificial neural networks (ANN) were used. For this purpose, 102 blastholes were observed and drilling condition, drilling pattern and time of drilling in each blasthole were recorded. To obtain a correlation between this data and prediction of penetration rate, MATLAB software was used. To train the pattern of ANN, 77 data has been used and 25 of them found for testing the pattern. Performance of ANN models was assessed through the root mean square error (RMSE) and correlation coefficient (R2). For optimized model (14-14-10-1) RMSE and R2 is 0.1865 and 86%, respectively, and its sensitivity analysis showed that there is a strong correlation between penetration rate and RQD, rotation and blasthole diameter. High correlation coefficient and low root mean square error of these models showed that the ANN is a suitable tool for penetration rate prediction.
Postęp wiercenia przy wierceniach skał jest jednym z podstawowych parametrów decydujących o opłacalności przedsięwzięcia. Całkowite koszty prowadzenia prac wiertniczych określa się w oparciu o prognozowane tempo postępu wiercenia, parametr ten uwzględnia się następnie przy planowaniu prac wydobywczych. Niektóre spośród licznych czynników wpływających na postęp wiercenia przy użyciu wiertła obrotowo-udarowego nie zostały jeszcze w pełni rozpoznane. Przy prognozowaniu postępu wiercenia prowadzonego przy użyciu urządzeń udarowo-obrotowych uwzględniono cztery rodzaje skał obecnych w kopalni Sangan, leżącej w prowincji Khorasan-Razavi w północno -wschodniej części Iranu. Wybrane czynniki mające wpływ na postęp prac wiertniczych pogrupowano w trzy kategorie: właściwości skał, warunki prowadzenia prac wiertniczych oraz plan prowadzenia wiercenia. Parametry określające właściwości skał to gęstość, jakość skał (RQD) i wytrzymałość na ściskanie jednoosiowe, wytrzymałość skał otrzymywana w oparciu o test brazylijski, porowatość, twardość Mohra, moduł Younga, prędkość propagacji fali, Parametry określające warunki prowadzenia wierceń obejmują: udar, prędkość obrotowa, siła naporu, ciśnienie płukania, zaś parametry związane z planem prowadzenia wiercenia obejmują: wymiary otworu wiertniczego i długość. Właściwości skał określono laboratoryjnie, warunki i plan wierceń badano w terenie. Korelacji pomiędzy prędkością postępu wiercenia i właściwościami skał oraz warunkami i planem prac wiertniczych poszukiwano przy użyciu sztucznych sieci neuronowych (ANN). Zbadano 102 otwory wiertnicze, przeanalizowano warunki prowadzenia wierceń, plany prac i zarejestrowano czasy ich prowadzenia. W celu znalezienia korelacji pomiędzy tymi danymi a prognozowaną prędkością wiercenia wykorzystano oprogramowanie MATLAB. W treningu sieci neuronowej wykorzystano 77 danych, 25 z nich otrzymano w drodze testowania wzorca. Wyniki działania sieci neuronowych oceniono w oparciu o błąd średniokwadratowy (RMSE) oraz współczynnik korelacji (R2). Dla zoptymalizowanego modelu (14-14-10-1) błąd średniokwadratowy i współczynnik korelacji wynoszą odpowiednio 0.1865 i 86%. Analiza wrażliwości wykazała istnienie silnej korelacji pomiędzy prędkością wiercenia a jakością skały, prędkością obrotową wiertła i średnicą otworu wiertniczego. Wysoki współczynnik korelacji i niska wartość błędu średniokwadratowego otrzymana dla tych modeli wskazuje, że metody wykorzystujące sztuczne sieci neuronowe są odpowiednie do prognozowania prędkości wiercenia.
Źródło:
Archives of Mining Sciences; 2012, 57, 3; 715-728
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies