Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Stress test" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
The law of effective stress for rocks in light of results of laboratory experiments
Prawo naprężeń efektywnych dla skał w świetle wyników badań laboratoryjnych
Autorzy:
Nowakowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/219996.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
prawo naprężeń efektywnych
konwencjonalne naprężenie efektywne
równanie ciśnienia efektywnego
wartość ciśnienia efektywnego
teoria Biota
współczynnik Biota
test ściśliwości
test trójosiowego ściskania
effective stress law
conventional effective stress law
effective pressure equation
effective pressure value
Biot theory
Biot coefficient
compressibility test
triaxial compression test
Opis:
This paper presents the results of laboratory tests carried out in order to formulate effective stress law. The law was sought for two different cases: first - when rock was treated as a porous Biot medium (Biot, 1941; Nur & Byerlee, 1971) and second - when the law was formulated according to definition of Robin (1973) developed by Gustkiewicz (1990) and Nowakowski (2007). In the first case coefficents (4) and (5) of the Biot equation (3) were were determined on the basis of compressibility test, in the second one effective pressure equation (9) and effective pressure value (11) were found on the basis of results of so called individual triaxial compression test (see Kovari et al., 1983) according to the methodology given by Nowakowski (2007). On the basis of Biot coefficients set of values was found that volumetric strain of the pore space described by a coefficient (5) was not dependent on the type of pore fluid and the pore pressure of only, while in case of volumetric strain of total rock described by coefficient (4) both the structure and texture of rock were important. The individual triaxial compression test results showed that for tested rock an effective pressure equation was a linear function of pore pressure as (15). The so called Rebinder effect (Rehbinder & Lichtman, 1957) might cause, that the α coefficient in equation (15) could assume values greater than one. This happened particularly in the case when the porous fluid was non-inert carbon dioxide. In case of inert pore fluid like kerosene the test results suggested that the a coefficient in equation (15) decreased while the differential strength limit was increasing. This might be caused by, so called, dillatancy strengthening (see Zoback & Byerlee, 1975). Another considered important parameter of the equation (15) was the value of the effective press p'. The results showed that the value of this parameter was practically independend on the pore fluid type. This conclusion was contrary to previous research (see, for example, Gustkiewicz et al., 2003 and Gustkiewicz, 1990) so these results should be treated with caution. There are no doubts, however, over p' increasing simultaneously with increase in Rσ1-σ3. Basically, the differential strength limit of the specimen is greater the greater is confining pressure applied to it. Thus, higher Rσ1-σ3 values are accompanied by higher p'.
W artykule przedstawiono wyniki badań laboratoryjnych wykonanych w celu sformułowania prawa naprężeń efektywnych, które prowadzono dla dwóch różnych sposobów formułowania tego prawa. W pierwszym przypadku zakładano, że skała jest ośrodkiem porowatym Biota (Biot, 1941; Nur i Byerlee, 1971), a samo prawo naprężeń efektywnych ma postać (3). W drugim przypadku posługiwano się podejściem zaproponowanym przez Robina (1973), które zostało następnie rozwinięte w Pracowni Odkształceń Skał IMG PAN m.in. przez Gustkiewicza (1990) i Nowakowskiego (2007) i wyznaczano prawo naprężeń efektywnych składające się z dwóch elementów: równania ciśnienia efektywnego (9) oraz wartości ciśnienia efektywnego (11). Podstawą wyznaczania współczynników dla równania Biota (3) były testy ściśliwości próbek skał pozostających w stanie powietrznie suchym oraz nasyconych inertnymi (azot, nafta) bądź sorbującymi (dwutlenek węgla, woda destylowana) płynami porowymi. Na podstawie wyników tych testów wyznaczano moduły ściśliwości badanych skał a następnie wyliczano wartości współczynników Biota wg (4) i (5). Przedmiotem badań były próbki z naprężeń dwóch skał oznaczonych jako piaskowiec 8348 i wapień 9166. Równanie ciśnienie efektywnego (9) oraz wartość ciśnienia efektywnego (11) wyznaczano wg metodyki podanej przez Nowakowskiego (2007) na podstawie wyników testu klasycznego trójosiowego ściskania (ang. „individual test” - por. Kovari i in., 1983) uzyskanych dla próbek skał, w których naprężenie różnicowe osiągnęło wartość różnicowej granicy wytrzymałości Rσ1-σ3. Przedmiotem badań były próbki wycięte ze skały oznaczonej jako piaskowiec „Tumlin”, a jako płynów porowych użyto azotu i nafty (płyny inertne) oraz dwutlenku węgla i wody destylowanej (płyny sorbujące). Z przedstawionych wyników badań nad wartościami współczynników Biota wynika, że rodzaj płynu porowego nie wpływa na wartość wyznaczanego według wzoru (5) współczynnika α2 co oznacza, że deformacja objętościowa tej przestrzeni nie zależy od rodzaju płynu porowego, a jedynie od panującego w niej ciśnienia. W przypadku współczynnika α1 (wzór (4)) określającego wpływ ciśnienia porowego na deformację ośrodka jako całości wyniki wykazują pewną sprzeczność. Wartości α1 uzyskane dla piaskowca gdy płynem porowym jest nieściśliwa ciecz są nieco większe niż gdy jest nim ściśliwy gaz. Z kolei wyniki uzyskane dla opoki wskazują na coś wręcz przeciwnego: stosunkowo duża (większa niż dla piaskowca) wartość α1 dla gazu i wyraźnie mniejsze wartości α1 dla cieczy. Ostatecznie wydaje się, że to, czy wartość współczynnika α1 zależy rodzaju medium porowego jest w dużym stopniu uwarunkowane strukturą i teksturą badanej skały. Dla skał okruchowych o dużej porowatości i dużej swobodzie filtracji płynu porowego rodzaj tego płynu będzie miał prawdopodobnie mniejsze znaczenie natomiast dla skał zwartych o małej porowatości mogą zachodzić duże różnice w wartościach tego współczynnika w zależności od tego czy medium porowym jest ciecz, czy gaz. Wyniki wykonanych testów konwencjonalnego trójosiowego ściskania pozwoliły stwierdzić, że dla badanego piaskowca równanie ciśnienia efektywnego na granicy wytrzymałości jest liniową funkcją ciśnienia porowego pp postaci (15). Zgodnie z tym co pokazali Gustkiewicz i in. (2004) oraz Nowakowski (2005, 2007) jeżeli oddziaływanie płynu porowego na skałę nie jest wyłącznie mechaniczne, to może dojść do sytuacji, w której współczynnik α w równaniu (15) ma wartość większą od 1. Zjawiskiem fizykochemicznym odpowiedzialnym za taką sytuację jest najprawdopodobniej tzw. efekt Rebindera (Rehbinder i Lichtman, 1957), który polega na obniżeniu wytrzymałości skały wskutek adsorpcji gazu porowego, przy czym spadek wytrzymałości jest tym większy, im wyższa jest ilość zasorbowanego gazu (por. także Hołda, 1990). Jeżeli płynem porowym jest CO2 to im wyższa wartość Rσ1-σ3 tym wyższa wartość α, czyli tym silniej manifestuje się wpływ ciśnienia porowego (rys. 6). Przyczyn takiego zjawiska należy prawdopodobnie upatrywać w sposobie pękania badanego materiału. Jak wiadomo różnicowa granica wytrzymałości rośnie ze wzrostem ciśnienia okólnego oraz ze wzrostem różnicy p - pp (Gustkiewicz, 1990). Wzrostowi temu towarzyszy stopniowa zmiana sposobu pękania skały od kruchego pękania do ciągliwego płynięcia. W próbce pękającej krucho wytwarza się zazwyczaj jedna płaszczyzna pęknięcia, wzdłuż której następuje zniszczenie próbki. Natomiast w próbce pękającej w sposób ciągliwy powstaje wiele równoległych do siebie płaszczyzn zniszczenia. Oznacza to, że sumaryczna powierzchnia nowych spękań powstających podczas zniszczenia ciągliwego jest prawdopodobnie znacznie większa niż podczas kruchego pęknięcia. Jeśli w trakcie eksperymentu spełnione są warunki (6) to pęknięcia te zostają wypełnione pozostającym pod stałym ciśnieniem gazem porowym, a to z kolei oznacza wzrost powierzchni fizykochemicznie czynnej, na której mogą zachodzić procesy sorpcyjne. A zatem i wpływ efektów sorpcyjnych powinien się okazać dla wyższych wartości Rσ1-σ3 znacząco większy. W przypadku, gdy płynem porowym była inertna ciecz (nafta) pokazane na rys. 6 wyniki badań sugerują, że wartość współczynnika α maleje ze wzrostem Rσ1-σ3. Przyczyną może tu być tzw. Wzmocnienie dylatancyjne (por. Zoback i Byerlee, 1975). W tym przypadku polega ono na tym, że gdy próbka skalna osiąga swoja granicę wytrzymałości zaczynają się w niej rozwijać nowe spękania, czego konsekwencją jest wzrost objętości przestrzeni porowej wywołujący spadek ciśnienia porowego. Jeżeli spadek ten nie zostanie wyrównany przez filtrującą z zewnątrz ciecz to rzeczywista wartość ciśnienia porowego będzie niższa niż zakładana. Z punktu widzenia prawa ciśnienia efektywnego oznacza to, że wpływ ciśnienia porowego na wartość Rσ1-σ3. ulegnie zmniejszeniu, co powinno dać α < 1. Drugim istotnym parametrem równania (15) jest tzw. wartość ciśnienia efektywnego p'. W rozważanych eksperymentach wielkość tę należy traktować jako pewne zastępcze ciśnienie okólne, które - zastosowane do skały dla pp = 0 - da w efekcie taka samą wartość Rσ1-σ3 jak para niezerowych ciśnień p i pp spełniających równanie (15). Pokazane na rys. 7 zależności sugerują, że wartość wielkości p' praktycznie nie zależy od rodzaju płynu porowego. Innymi słowy: jeśli pp = 0 to Rσ1-σ3 = const. dla danej wartości p' niezależnie od tego, czym wypełniona jest przestrzeń porowa skały. Wartości p' rosną natomiast ze wzrostem Rσ1-σ3 gdyż różnicowa granica wytrzymałości próbki jest tym wyższa im wyższe jest obciążające próbkę ciśnienie okólne. Jest zatem naturalne, że wyższym wartościom Rσ1-σ3 towarzyszą wyższe wartości p'.
Źródło:
Archives of Mining Sciences; 2012, 57, 4; 1027-1044
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Laboratory method for evaluating the characteristics of expansion rock bolts subjected to axial tension
Laboratoryjna metoda badania charakterystyk kotew rozprężnych poddanych rozciąganiu osiowemu
Autorzy:
Korzeniowski, W.
Skrzypkowski, K.
Herezy, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/218925.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
rock bolt support
laboratory test bed
stress-strain characteristics
obudowa kotwowa
laboratoryjne stanowisko badawcze
charakterystyka naprężeniowo-odkształceniowa
Opis:
Rock bolts have long been used in Poland, above all in the ore mining. Worldwide experience (Australia, Chile, Canada, South Africa, Sweden, and USA) provides evidence of rock bolt supports being used for loads under both static and dynamic conditions. There are new construction designs dedicated to the more extreme operating conditions, particularly in mining but also in tunneling. Appreciating the role and significance of the rock bolt support and its use in Polish conditions amounting to millions of units per year, this article describes a new laboratory test facility which enables rock bolt testing under static load conditions. Measuring equipment used as well as the possibilities of the test facility were characterized. Tests were conducted on expansion rock bolt supports installed inside a block simulating rock mass with compression strength of 80 MPa, which was loaded statically as determined by taking account of the load in order to maintain the desired axial tension, which was statically burdened in accordance with determined program load taking into consideration the maintenance of set axial tension strength at specified time intervals until capacity was exceeded. As an experiment the stress-strain characteristics of the rock bolt support were removed showing detailed dependence between its geometrical parameters as well as actual rock bolt deformation and its percentage share in total displacement and deformation resulting from the deformation of the bolt support elements (washer, thread). Two characteristic exchange parts with varying intensity of deformation /displacement per unit were highlighted with an increase in axial force static rock bolt supports installed in the rock mass.
Obudowa kotwowa jest już od dawna stosowana w Polsce, przede wszystkim w górnictwie rudnym. Światowe doświadczenia (Australia, Chile, Kanada, RPA, Szwecja, USA) świadczą o stosowaniu obudowy kotwowej zarówno w warunkach obciążeń o charakterze statycznym jak i dynamicznym. W podziemnych wyrobiskach górniczych wykonywanych na dużych głębokościach, szczególnie przy eksploatacji złóż rud miedzi w kopalniach LGOM, w których stosuje się samodzielną obudową kotwową istnieje niebezpieczeństwo nieprzewidzianego odpadania bloków skalnych do przestrzeni roboczej. Podstawowym zadaniem kotwienia wyrobisk górniczych jest zapewnienie ich stateczności, jako zasadniczy warunek bezpieczeństwa pracy. Powstają nowe konstrukcje przeznaczone do bardziej ekstremalnych warunków funkcjonowania, w szczególności w warunkach górniczych, ale również w tunelarstwie. Podstawowym rodzajem obudowy wyrobisk przygotowawczych i eksploatacyjnych w podziemnych kopalniach LGOM jest obudowa kotwowa rozprężna lub wklejana. Wybór sposobu utwierdzenia obudowy kotwowej zależy miedzy innymi od: czasu użytkowania, klasy stropu, wymiarów oraz przeznaczenia wyrobiska. W polach eksploatacyjnych, gdzie okres od wykonania wyrobiska do jego likwidacji jest stosunkowo krótki, częściej stosuje się kotwy rozprężne, które ze względu na mniejszą czasochłonność zabudowy, pozwalają na większą wydajność kotwienia. Doceniając rolę i znaczenie obudowy kotwowej oraz jej zużycie sięgające w warunkach polskich milionów sztuk rocznie, w niniejszym artykule opisano nowe stanowisko laboratoryjne umożliwiające badanie rzeczywistej obudowy kotwowej w warunkach obciążeń statycznych. Stanowisko laboratoryjne do badania wytrzymałości na rozciąganie obudowy kotwowej zbudowane w Katedrze Górnictwa Podziemnego AGH umożliwia badania obudów kotwowych przy różnych warunkach obciążeń. Składa się ono z kilku współpracujących ze sobą podzespołów: Hydraulicznego Układu Obciążającego Kotew (HUK), pulpitu sterującego I, pulpitu sterującego II, pulpitu rejestrującego oraz zespołu agregatu hydraulicznego (Rys. 1). W artykule scharakteryzowano zastosowaną aparaturę pomiarową oraz możliwości badawcze stanowiska badawczego. Pomiar siły na stanowisku laboratoryjnym był wykonywany za pomocą czterech tensometrycznych czujników siły. Czujniki były rozmieszczone co 90 stopni na tarczy pomiarowej (Rys. 4). Całkowita siła rejestrowana podczas badań rozciągania żerdzi kotwowej była sumą wartości sił uzyskiwanych na poszczególnych czujnikach siły. Pomiar przemieszczeń elementów obudowy oraz wydłużenia żerdzi kotwowej był wykonywany za pomocą enkodera linkowego inkrementalnego. Enkoder przymocowany był na stałe do bloku siłowników (Rys. 6), natomiast linka enkodera przemieszczała się wraz z wysuwem tarczy pomiarowej (Rys. 6). W celu określenia odkształcenia materiału badanego elementu (żerdzi kotwowej) w badaniach zastosowano tensometry elektrooporowe typu kratowego (Rys. 7). Czujniki siły, przemieszczenia oraz odkształcenia zostały podłączone do uniwersalnego wzmacniacza pomiarowego QuantumX MX840, za pomocą wtyczek 15-pinowych. Podczas procesu rozciągania kotwy wyniki pomiarów siły, przemieszczenia oraz odkształcenia były rejestrowane na bieżąco za pomocą specjalistycznego programu z dziedziny technik pomiarowych „CATMAN – EASY”. Wybór programu wynikał z możliwości współpracy z systemem operacyjnym MS Windows oraz połączenia komputera z uniwersalnym wzmacniaczem pomiarowym QuantumX MX840 poprzez kabel ethernetowy. Program umożliwiał bieżącą (on-line) wizualizację i ocenę pomiaru. Ponadto po zakończeniu testu, tworzone były raporty dokumentujące wyniki pomiarów, które były zapisywane w rozszerzeniu pliku ASCII. Następnie dane były przesyłane do programu Microsoft Excel w celu analizy uzyskanych wyników. W badaniach zastosowano obudowę kotwową rozprężną, zainstalowaną w bloku symulującym górotwór o wytrzymałości skał na ściskanie wynoszącej 80MPa (Rys. 3), która była obciążana statycznie według ustalonego programu obciążenia uwzględniającego utrzymywanie zadanej osiowej siły rozciągającej w określonych przedziałach czasowych, aż do przekroczenia nośności. W badaniach zastosowano obudowę kotwową rozprężną, która stanowi podstawową obudowę wyrobisk eksploatacyjnych w ZG „Polkowice – Sieroszowice”. Obudowa składała się z żerdzi kotwowej typu RS-2N (Tabl. 1). Żerdź kotwowa współpracowała z głowicą rozprężną typu KE3-2K (Tabl. 2, Rys. 9). W badaniach zastosowano profilowane podkładki kotwowe okrągłe o grubości 6 mm (Tabl. 3, Rys. 10). Eksperymentalnie zdjęto charakterystykę naprężeniowo-odkształceniową kotwy (Rys. 12) pokazując szczegółowo zależności pomiędzy jej parametrami geometrycznymi, odkształceniami właściwymi żerdzi kotwowej oraz ich procentowego udziału w całkowitych przemieszczeniach i odkształceniach wynikających z deformowania się elementów składowych obudowy kotwowej (podkładka, gwint) oraz przemieszczeń głowicy rozprężnej. Wyróżniono dwie znamienne części charakterystyki różniące się wielkością intensywności odkształceń/przemieszczeń przypadających na jednostkowy przyrost wartości siły osiowej obciążającej statycznie kotew zainstalowaną w górotworze.
Źródło:
Archives of Mining Sciences; 2015, 60, 1; 209-224
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental study on the joint application of innovative techniques for the improved drivage of roadways at depths over 1 km: a case study
Autorzy:
Zhang, Wei
Tang, Jia-Jia
Zhang, Dong-Sheng
Zhang, Lei
Sun, Yuyan
Zhang, Wei-Sheng
Powiązania:
https://bibliotekanauki.pl/articles/219958.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
pomiar naprężeń
wiercenie
piaskowanie
odkształcenie
roadways at depth over 1 km
in-situ stress measurements
efficient drivage
rapid drilling and blasting
deformation control of SRR
industrial test
Opis:
Finding effective ways to efficiently drive roadways at depths over 1 km has become a hotspot research issue in the field of mining engineering. In this study, based on the local geological conditions in the Xinwen Mining Area (XMA) of China, in-situ stress measurements were conducted in 15 representative deep roadways, which revealed the overall tectonic stress field pattern, with the domination of the horizontal principal stresses. The latter values reached as high as 42.19 MPa, posing a significant challenge to the drivage work. Given this, a comprehensive set of innovative techniques for efficiently driving roadways at depths over 1 km was developed, including (i) controlled blasting with bidirectional energy focusing for directional fracturing, (ii) controlled blasting with multidirectional energy distribution for efficient rock fragmentation, (iii) wedge-cylinder duplex cuts centered on double empty holes, and (iv) high-strength supports for deep roadways. The proposed set of techniques was successfully implemented in the –1010 west rock roadway (WRR) drivage at the Huafeng Coal Mine (HCM). The improved drivage efficiency was characterized by the average and maximum monthly advances of 125 and 151 m, respectively. The roadway cross-sectional shape accuracy was also significantly improved, with the overbreak and underbreak zones being less than 50 mm. The deformation in the surrounding rock of roadway (SRR) was adequately controlled, thus avoiding repeated maintenance and repair. The relevant research results can provide technical guidance for efficient drivage of roadways at depths over 1 km in other mining areas in China and worldwide.
Źródło:
Archives of Mining Sciences; 2020, 65, 1; 159-178
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies