- Tytuł:
-
Sharp Interface Numerical Modeling of Solidification Process of Pure Metal
Sposób modelowania numerycznego procesu krzepnięcia z ostrym frontem - Autorzy:
- Skrzypczak, T.
- Powiązania:
- https://bibliotekanauki.pl/articles/356217.pdf
- Data publikacji:
- 2012
- Wydawca:
- Polska Akademia Nauk. Czytelnia Czasopism PAN
- Tematy:
-
Pure Metal
Stefan problem
Sharp Interface
solidification
finite element method
level set method - Opis:
-
The paper is focused on the study of the solidification process of pure metals, in which the solidification front is smooth. It has the shape of a surface separating liquid from solid in three dimensional space or a curve in 2D. The location and topology of moving interface change over time and its velocity depends on the values of heat fluxes on the solid and liquid side of it. Such a formulation belongs to a group called Stefan problems. A mathematical model of the Stefan problem is based on differential equations of heat conduction and interface motion. This system of equations is supplemented by appropriate initial and boundary conditions as well as the continuity conditions at the solidification interface. The solution involves the determination of temporary temperature field and interface position. Typically, it is impossible to obtain the exact solution of such problem. This paper presents a mathematical model for the two-dimensional problem. The equation of heat conduction is supplemented with Dirichlet and Neumann boundary conditions. Interface motion is described by the level set equation which solution is sought in the form of temporary distribution of the signed distance function. Zero level of the distance field coincides with the position of the front. Values of the signed distance function obtained from the level set equation require systematic reinitialization. Numerical model of the process based on the finite element method (FEM) is also presented. FEM equations are derived and discussed. The explicit time integration scheme is proposed. It helps to avoid solving the system of equations during each time step. The reinitialization procedure of the signed distance function is described in detail. Examples of numerical analysis of the solidification process of pure copper within the complex geometry are presented. Results obtained from the use of constant material properties are compared with those obtained from the use of temperature dependent properties.
W pracy skupiono się na badaniu procesu krzepnięcia czystych metali, podczas którego front krzepnięcia pozostaje płaski. W przypadku trójwymiarowym jest on powierzchnia oddzielająca ciecz od ciała stałego, w przypadku dwuwymiarowym ma postać krzywej. Położenie i topologia frontu krzepnięcia zmienia się w czasie, a prędkość przemieszczania zależy od różnicy wartości strumieni cieplnych po stronie ciała stałego i cieczy. Takie sformułowanie klasyfikuje opisywane zjawisko w grupie tzw. zagadnień Stefana. Model matematyczny tego procesu stanowią równania różniczkowe przewodnictwa ciepła oraz ruchu powierzchni międzyfazowej. Układ ten uzupełniają odpowiednie warunki brzegowe, początkowe oraz warunki ciągłości na froncie. Jego rozwiązanie polega na wyznaczeniu chwilowych pól temperatury oraz położenia frontu. Najczęściej nie da się uzyskać rozwiązania tak sformułowanego problemu w sposób dokładny. W pracy zaprezentowano model matematyczny zagadnienia dla przypadku płaskiego. Równanie różniczkowe przewodnictwa ciepła uzupełniono warunkami brzegowymi Dirichleta oraz Neumanna. Ruch interfejsu międzyfazowego opisano tzw. równaniem poziomic (ang. level set equation), którego rozwiązania poszukiwano w postaci chwilowego rozkładu funkcji dystansu. Izolinia zerowa tego rozkładu pokrywa się z położeniem frontu. Otrzymane wartości funkcji dystansu wymagają systematycznej reinicjalizacji. Przedstawiono również model numeryczny procesu bazujący na metodzie elementów skończonych. Opisano schemat postępowania prowadzący do otrzymania dyskretnych równań MES. Wykorzystano jawny schemat całkowania po czasie, co pozwoliło uniknąć konieczności rozwiazywania układu równań zarówno w przypadku równania przewodnictwa ciepła jak i równania poziomic. Szczegółowo opisano metodę reinicjalizowania funkcji dystansu. Zaprezentowano przykłady analizy numerycznej procesu krzepnięcia czystej miedzi w obszarze o złożonej geometrii. Porównano wyniki otrzymane dla stałych własności materiałowych z wynikami uzyskanymi z wykorzystaniem własności zależnych od temperatury. - Źródło:
-
Archives of Metallurgy and Materials; 2012, 57, 4; 1189-1199
1733-3490 - Pojawia się w:
- Archives of Metallurgy and Materials
- Dostawca treści:
- Biblioteka Nauki