Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "flow temperature" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Impact of Coolant Water Flow Rate and Temperature Underside Cooling Slope on Solidification with Microstructure and Mechanical Properties of Casted AZ91 Mg Alloy
Autorzy:
Sahu, Sambeet
Kund, Nirmal
Powiązania:
https://bibliotekanauki.pl/articles/28099567.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
coolant water flow rate
coolant water temperature
cooling slope
microstructure
mechanical properties
Opis:
Present study describes about the effect of coolant water flow rate and coolant water temperature underside cooling slope on structural characteristics of casted AZ91 Mg alloy. Here, over the cooling slope, hot melt flows from top to bottom. Additionally, under the cooling slope, coolant water flows from bottom to top. Slurry gets obtained at bottom of cooling slope by pouring AZ91 Mg melt from top of the slope. Coolant water flow rate with coolant water temperature underside cooling slope warrant necessary solidification and shear to obtain AZ91 Mg slurry. Specifically, slurry at 5 different coolant water flow rates (4, 6, 8, 10, 12 lpm) and at 5 different coolant water temperatures (15, 20, 25, 30, 35°C) underside cooling slope are delivered inside metal mould. Modest coolant water flow rate of 8 lpm with coolant water temperature of 25°C (underside cooling slope) results fairly modest solidification that would enormously contribute towards enhanced structural characteristics. As, quite smaller/bigger coolant water flow rate/temperature underside cooling slope would reason shearing that causes inferior structural characteristics. Ultimately, favoured microstructure was realized at 8 lpm coolant water flow rate and 25°C coolant water temperature underside cooling slope with grain size, shape factor, primary α-phase fraction and grain density of 63 µm, 0.71, 0.68 and 198, respectively. Correspondingly, superior mechanical properties was realized at 8 lpm coolant water flow rate and 25°C coolant water temperature underside cooling slope with tensile strength, elongation, yield strength and hardness of 250 MPa, 8%, 192 MPa and 80 HV, respectively.
Źródło:
Archives of Metallurgy and Materials; 2023, 68, 2; 673--680
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pressurized Recuperator for Heat Recovery in Industrial High Temperature Processes
Ciśnieniowy rekuperator do odzysku ciepła z przemysłowych procesów wysokotemperaturowych
Autorzy:
Gil, S.
Góral, J.
Horňak, P.
Ochman, J.
Wiśniewski, T.
Powiązania:
https://bibliotekanauki.pl/articles/354172.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
recuperator
heat transfer
flow
high temperature processes
rekuperator
odzyskiwanie ciepła
przepływ
procesy wysokotemperaturowe
Opis:
Recuperators and regenerators are important devices for heat recovery systems in technological lines of industrial processes and should have high air preheating temperature, low flow resistance and a long service life. The use of heat recovery systems is particularly important in high-temperature industrial processes (especially in metallurgy) where large amounts of thermal energy are lost to the environment. The article presents the process design for a high efficiency recuperator intended to work at high operating parameters: air pressure up to 1.2 MPa and temperature of heating up to 900°C. The results of thermal and gas-dynamic calculations were based on an algorithm developed for determination of the recuperation process parameters. The proposed technical solution of the recuperator and determined recuperation parameters ensure its operation under maximum temperature conditions.
Rekuperatory i regeneratory są ważnymi urządzeniami systemów odzysku ciepła w ciągach technologicznych procesów przemysłowych i powinny charakteryzować się wysoką temperaturą podgrzewania powietrza, niewielkimi oporami przepływu, a także długim czasem eksploatacji. Stosowanie układów do odzysku ciepła ma szczególne znaczenie w wysokotemperaturowych procesach przemysłowych (zwłaszcza w hutnictwie), gdzie tracone są do otoczenia duże ilości energii cieplej. W artykule zaprezentowano projekt procesowy wysokosprawnego rekuperatora przeznaczonego do działania przy wysokich parametrach roboczych: ciśnienia powietrza do 1.2 MPa i temperatury podgrzania do 900°C. Wyniki obliczeń cieplnych i gazodynamicznych uzyskano w oparciu o opracowany algorytm do wyznaczania parametrów procesowych rekuperacji. Zaproponowane rozwiązanie techniczne rekuperatora i wyznaczone parametry rekuperacji umożliwiają jego działanie w maksymalnych warunkach termicznych.
Źródło:
Archives of Metallurgy and Materials; 2015, 60, 3A; 1847-1850
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies