Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "artificial material" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
The Use of Fuzzy Systems for Forecasting the Hardenability of Steel
Autorzy:
Sitek, W.
Irla, A.
Powiązania:
https://bibliotekanauki.pl/articles/356485.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
computational material science
artificial intelligence methods
materials design steels
modelling
simulation
Opis:
The goal of the research carried out was to develop the fuzzy systems, allowing the determination of the Jominy hardenability curve based on the chemical composition of structural steels for quenching and tempering. Fuzzy system was created to calculate hardness of the steel, based on the alloying elements concentrations, and to forecast the hardenability curves. This was done based on information from the PN-EN 10083-3: 2008. Examples of hardenability curves calculated for exemplar steels were presented. Results of the research confirmed that fuzzy systems are a useful tool in evaluation the effect of alloying elements on the properties of materials compared to conventional methods. It has been demonstrated the practical usefulness of the developed models which allows forecasting the steels’ Jominy hardenability curve.
Źródło:
Archives of Metallurgy and Materials; 2016, 61, 2A; 797-802
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of Ferrite Stainless Steel Mechanical Properties Prediction with artificial Intelligence Algorithms
Autorzy:
Honysz, R.
Powiązania:
https://bibliotekanauki.pl/articles/354759.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
analysis and modelling
numerical techniques
computational material science
artificial algorithms
stainless steel
Opis:
The article presents a computational model build with the use of artificial neural networks optimized by genetic algorithm. This model was used to research and prediction of the impact of chemical elements and heat treatment conditions on the mechanical properties of ferrite stainless steel. Optimization has allowed the development of artificial neural networks, which showed a better or comparable prediction result in comparison to un-optimized networks has reduced the number of input variables and has accelerated the calculation speed. The introduced computational model can be applied in industry to reduce the manufacturing costs of materials. It can also simplify material selection when an engineer must properly choose the chemical elements and adequate plastic and/or heat treatment of stainless steels with required mechanical properties.
Źródło:
Archives of Metallurgy and Materials; 2020, 65, 2; 749-753
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Developing a Methodology for Building the Knowledge Base and Application Procedures Supporting the Process of Material and Technological Conversion
Autorzy:
Wilk-Kołodziejczyk, Dorota
Jaśkowiec, Krzysztof
Bitka, Adam
Pirowski, Zenon
Grudzień-Rakoczy, Małgorzata
Chrzan, Konrad
Małysza, Marcin
Doroszewski, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/2134111.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial intelligence
material conversion
technological conversion
selection of parameters
prediction of mechanical properties
Opis:
The article presents the developed IT solutions supporting the material and technological conversion process in terms of the possibility of using the casting technology of selected alloys to produce products previously manufactured with the use of other methods and materials. The solutions are based on artificial intelligence, machine learning and statistical methods. The prototype module of the information and decision-making system allows for a preliminary assessment of the feasibility of this type of procedure. Currently, the selection of the method of manufacturing a product is based on the knowledge and experience of the technologist and constructor. In the described approach, this process is supported by the proprietary module of the information and decision-making system, which, based on the accumulated knowledge, allows for an initial assessment of the feasibility of a selected element in a given technology. It allows taking into account a large number of intuitive factors, as well as recording expert knowledge with the use of formal languages. Additionally, the possibility of searching for and collecting data on innovative solutions, supplying the knowledge base, should be taken into account. The developed and applied models should allow for the effective use and representation of knowledge expressed in linguistic form. In this solution, it is important to use methods that support the selection of parameters for the production of casting. The type, number and characteristics of data have an impact on the effectiveness of solutions in terms of classification and prediction of data and the relationships detected.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 3; 1085--1091
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Artificial Neural Networks in the Analysis of Mechanisms Destroying Forging Tools
Autorzy:
Hawryluk, M.
Mrzygłód, B.
Gronostajski, Z.
Głowacki, M.
Olejarczyk-Wożeńska, I.
Powiązania:
https://bibliotekanauki.pl/articles/353528.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
decision support system
durability of forging tools
artificial neural network
loss of material
wear
Opis:
This article discusses the results of studies using the developed artificial neural networks in the analysis of the occurrence of the four main mechanisms destroying the selected forging tools subjected to five different surface treatment variants (nitrided layer, pad welded layer and three hybrid layers, i.e. AlCrTiSiN, Cr/CrN and Cr/AlCrTiN). Knowledge of the forging tool durability, needed in the process of artificial neural network training, was included in the set of training data (about 800 records) derived from long-term comprehensive research carried out under industrial conditions. Based on this set, neural networks with different architectures were developed and the results concerning the intensity of the occurrence of thermal-mechanical fatigue, abrasive wear, mechanical fatigue and plastic deformation were generated for each type of the applied treatment relative to the number of forgings, pressure, friction path and temperature.
Źródło:
Archives of Metallurgy and Materials; 2020, 65, 1; 193-200
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Artificial Neural Networks in Modeling of Manufactured Front Metallization Contact Resistance for Silicon Solar Cells
Zastosowanie sztucznych sieci neuronowych w modelowaniu rezystancji kontaktu wytwarzanej przedniej metalizacji krzemowych ogniw słonecznych
Autorzy:
Musztyfaga-Staszuk, M.
Honysz, R.
Powiązania:
https://bibliotekanauki.pl/articles/356591.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
computational material science
artificial neural networks
silicon solar cell
selective laser sintering
screen printing
co-firing in the furnace
zastosowanie sztucznych sieci neuronowych
krzemowe ogniwa słoneczne
selektywne spiekanie laserowe
sitodruk
wypalanie w piecu
Opis:
This paper presents the application of artificial neural networks for prediction contact resistance of front metallization for silicon solar cells. The influence of the obtained front electrode features on electrical properties of solar cells was estimated. The front electrode of photovoltaic cells was deposited using screen printing (SP) method and next to manufactured by two methods: convectional (1. co-fired in an infrared belt furnace) and unconventional (2. Selective Laser Sintering). Resistance of front electrodes solar cells was investigated using Transmission Line Model (TLM). Artificial neural networks were obtained with the use of Statistica Neural Network by Statsoft. Created artificial neural networks makes possible the easy modelling of contact resistance of manufactured front metallization and allows the better selection of production parameters. The following technological recommendations for the screen printing connected with co-firing and selective laser sintering technology such as optimal paste composition, morphology of the silicon substrate, co-firing temperature and the power and scanning speed of the laser beam to manufacture the front electrode of silicon solar cells were experimentally selected in order to obtain uniformly melted structure well adhered to substrate, of a small front electrode substrate joint resistance value. The prediction possibility of contact resistance of manufactured front metallization is valuable for manufacturers and constructors. It allows preserving the customers’ quality requirements and bringing also measurable financial advantages.
Artykuł przedstawia zastosowanie sztucznych sieci neuronowych do predykcji rezystancji przedniej metalizacji w krzemowych ogniwach słonecznych. Oceniono wpływ tak wytworzonej elektrody przedniej na własności elektryczne ogniw fotowoltaicznych. Przednią elektrodę ogniw fotowoltaicznych naniesiono metodą sitodruku SP (ang. Screen Printing) i następnie wytwarzano dwoma metodami: konwencjonalną (1. wypalanie w piecu taśmowym) i niekonwencjonalną (2. selektywne spiekanie laserowe). Do wyznaczenia rezystancji elektrod przednich zastosowano metodę linii transmisyjnych TLM (ang. Transmission Line Model). Sztuczne sieci neuronowe zostały opracowane z wykorzystaniem pakietu Statistica Neural Network firmy Statsoft. Opracowane sztuczne sieci neuronowe umożliwią modelowanie rezystancji wytworzonej przedniej metalizacji i ułatwią lepszy dobór parametrów produkcji. Następujące zalecenia technologiczne sitodruku połączonego z wypalaniem w piecu i selektywnym spiekaniem laserowym takie jak optymalny skład pasty, morfologię podłoża krzemowego, temperaturę wypalania oraz moc i prędkość skanowania wiązki laserowej, do wytworzenia przedniej elektrody krzemowych ogniw słonecznych dobrano eksperymentalnie celem uzyskania celem uzyskania jednolicie stopionej struktury dobrze przylegającej do podłoża, małej wartości rezystancji połączenia elektrody przedniej z podłożem. Możliwość estymacji rezystancji przedniej metalizacji jest wartościowa dla producentów i konstruktorów. Pozwala ona na dotrzymanie wymagań klienta i przynosi wymierne zyski.
Źródło:
Archives of Metallurgy and Materials; 2015, 60, 3A; 1673-1678
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies