Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wang, Yi" wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
On the Estimation of Fatigue Crack Initiation Life of H62 Brass
Autorzy:
Zheng, M.
Zhang, S.
Peng, Xiao Jian
Wang, Yi
Powiązania:
https://bibliotekanauki.pl/articles/2048866.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
strain energy density
fatigue damage strain
theoretical strain fatigue limit
fatigue crack initiation
life prediction
Opis:
In the present paper, the excavation of the energetic approach that estimates the fatigue crack initiation life of metal is conducted for H62 brass. The benefit of the energetic approach is the division of the actual applied strain range Δε into two parts, that is, a damage strain range Δεd that induces fatigue damage within the metal, and an undamaged strain range Δεc, which does not produce fatigue damage of the metal and corresponds to theoretical strain fatigue limit. The brightness of this approach is that the undamaged strain range Δεc can be estimated by the fundamental conventional parameters of metal in tensile test. The result indicated that the fatigue crack initiation life of H62 brass can be estimated by this approach successfully.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 1; 31-35
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of NaCl Additive on the Reduction Process of MoO3 to Mo2C by High-Purity CO Gas
Autorzy:
Que, Biao-Hua
Wang, Lu
Wang, Bao
Chen, Yi
Xue, Zheng-Liang
Powiązania:
https://bibliotekanauki.pl/articles/2106609.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Mo2C
MoO3
CO
NaCl
Opis:
In this work, influence of NaCl additive on the transformation process of MoO3 to Mo2C under pure CO atmosphere in the range of room temperature to 1170 K was investigated. The results showed that transformation of MoO3 to Mo2C can be roughly divided into two stages: the reduction of MoO3 to MoO2 (the first stage) and the carburization of MoO2 to Mo2C (the second stage). As to the first stage, it was found that increasing the content of NaCl (from 0 to 0.5 wt.%) was beneficial for the increase of reaction rate due to the nucleation effect; while when the content of NaCl increased to 2 wt.%, the reaction rate will be decreased in turn. As to the second stage, the results showed that reaction rate was decreased with the increase of NaCl, which may be due to the formation of low-melting point eutectic. The work also found that morphology of as-prepared Mo2C was irregular and particle size of it was gradually increased with increasing the NaCl content. According to the results, the possible reaction mechanism was proposed.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 2; 787--796
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Continuous Growth of Bulk Si by Temperature Gradient Zone Melting Method
Autorzy:
Li, Jiayan
Wang, Liang
Hao, Jianjie
Ni, Ping
Tan, Yi
Powiązania:
https://bibliotekanauki.pl/articles/356541.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
bulk Si
TGZM
Si-Al alloy
growth rate
impurities
Opis:
Temperature gradient zone melting (TGZM) method was used to obtain bulk Si continuously for the efficient separation and purification of primary Si from the Si-Al alloy in this work. The effects of alloy thickness, temperature gradient and holding time in TGZM purification technology were investigated. Finally, the continuous growth of bulk Si without eutectic inclusions was obtained. The results showed that the growth rate of bulk Si was independent of the liquid zone thickness. When the temperature gradient was changed from 2.48 K/mm to 3.97 K/mm, the growth rate of bulk Si was enhanced from 7.9×10-5 mm/s to 2.47×10-4 mm/s, which was increased by about 3 times. The bulk Si could grow continuously and the growth rate was decreased with the increase of holding time from 1 h to 5 h. Meanwhile, low refining temperature was beneficial to the removal of impurities. With a precipitation temperature of 1460 K and a temperature gradient of 2.48 K/mm, the removal rates of Fe, P and B were 99.8%, 94.0% and 63.6%, respectively.
Źródło:
Archives of Metallurgy and Materials; 2019, 64, 1; 271-278
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research on Distribution and Morphology of Primary Si Under the Effect of Direct Current
Autorzy:
Li, Jiayan
Njuguna, Benson Kihono
Ni, Ping
Wang, Liang
Tan, Yi
Powiązania:
https://bibliotekanauki.pl/articles/2049663.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
silicon source
direct current
Joule heating
Si morphology
Fe impurity
Opis:
A source of pure silicon was added into an alloy refining system during a refining process with the application of a direct electric current. The effect of the temperature difference between the graphite electrodes and the alloy was decreased. The temperature increase value (ΔT) of the Al-28.51wt.%Si alloy sample caused by Joule heating was calculated by weighing the mass of primary silicon. When the current density was 5.0×105A/m2, the overall temperature increase in the alloy was about 90°C regardless of the alloy composition. Adequate silicon atoms recorded the footprint of the electric current in the alloy melt. The flow convection generated by the electric current in the melt during the solidification process resulted in the refinement of primary silicon. The Fe impurity content in alloy refining without the electric current density was 2.16 ppm. However, it decreased to 1.27 ppmw with the application of an electric current density of 5.0×105A/m2.
Źródło:
Archives of Metallurgy and Materials; 2021, 66, 2; 367-372
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Particle Sizes of Slag on Reduction Characteristics of Nickel Slag-Coal Composite Briquette
Autorzy:
Li, Xiaoming
Li, Yi
Xing, Xiangdong
Wang, Yanjun
Wen, Zhenyu
Yang, Haibo
Powiązania:
https://bibliotekanauki.pl/articles/2049420.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
resources reutilization
nickel slag
particle size
direct reduction
reduction characteristics
Opis:
Nickel slag has a high-content iron and is a secondary utilization resource with great development potential. The coal-based direct reduction is an innovative technology that can be used to utilize the iron resources in nickel slag. The effect of the particle size of nickel slag on the strength and the reduction of nickel slag-coal composite briquettes were investigated. Four samples with particle size of 75~106 μm, 106~150 μm, 150~270 μm, and >270 μm were selected. The drop strength increased 9.4 times and the compressive strength reached 281.1 N when the nickel slag particle size decreased from >270 μm to 75~106 μm. The reduction degree determined by the data from the thermogravimetric experiment indicated that its maximum was 79.545%. The reduction experiments performed at 1200°C for 45 minutes indicated that the nickel slag with particle sizes between 75~106 μm were appropriate for the reduction of the nickel slag-coal composite briquettes.
Źródło:
Archives of Metallurgy and Materials; 2021, 66, 1; 127-134
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies