Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kumar, K.S." wg kryterium: Autor


Wyświetlanie 1-7 z 7
Tytuł:
Synthesis and Characterization of Al-Zn-Mg alloy / Zircon Sand Reinforced Composites
Autorzy:
Satish Kumar, T.
Shalini, S.
Krishna Kumar, K.
Powiązania:
https://bibliotekanauki.pl/articles/351684.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Al-Zn-Mg alloy
microstructure
hardness
tensile strength
wear
Opis:
Aluminium based metal matrix composite (Al-MMC’s) are much popular in the field like automobile and aerospace industries, because of its ease of fabrication process and excellent mechanical properties. In this study, Al-Zn-Mg alloy composite reinforced with 3, 6 and 9 v % of zircon sand was synthesised by stir casting technique. The microstructure of the composites revealed uniform distribution of reinforced particles. Hardness, tensile strength and wear resistance of Al-Zn-Mg alloy/zircon sand composite were found to increase with increase in v % percentage of zircon sand. Scanning Electron Microscope analysis of wear tested sample surface of composites revealed no evidence of plastic deformation of matrix phase. Particle pulls out and abrasive wear was the common feature observed from all the composites.
Źródło:
Archives of Metallurgy and Materials; 2018, 63, 2; 689-695
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Synthesis and Characterization of Functionally Graded Al-6Cr-Y2O3 Composites
Autorzy:
Satish Kumar, T.
Krishna Kumar, K.
Shalini, S.
Subramanian, R.
Powiązania:
https://bibliotekanauki.pl/articles/353460.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Al-6Cr alloy
powder metallurgy
functionally graded materials
wear resistance
Opis:
The present investigation aims at fabricating a functionally graded Al-6Cr-Y2O3 composite and its microstructural and property characterization. Al-6Cr-alloys with varying percentage of Y2O3 (5-10 vol. %) have been used to fabricate FGM by powder metallurgy route. The samples were subsequently subjected to solution treatment at 610°C for 4h followed by artificially aged at 310°C for 4h. The microstructure, hardness and wear behavior of these FGM have been evaluated. FGM exhibited superior hardness (360 ± 5 VHN) as compared to the unprocessed composites (220 ± 5 VHN) due to the uniform dispersion of Y2O3 particles. Wear resistance of Al-6Cr-10Y2O3 FGM were compared that of with pure Al-6Cr alloy by dry abrasive wear test. Al-6Cr-10Y2O3 FGM composites were found to exhibit higher wear resistance with the minimum wear rate of 0.009 mm3/m compared to the Al-6Cr alloy wear rate 0.02 mm3/m.
Źródło:
Archives of Metallurgy and Materials; 2018, 63, 4; 1649-1655
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of Rock Properties on Wear of M and SR Grade Rubber with Varying Normal Load and Sliding Speed
Autorzy:
Pal, S. K.
Rao, K. U. M.
Kumar, P. S.
Rajasekar, R.
Powiązania:
https://bibliotekanauki.pl/articles/356996.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
rock
rubber
wear
shear strength
surface roughness
Opis:
Rubbers are interesting materials and are extensively used in many mining industries for material transportation. Wear of rubber is a very complex phenomenon to understand. The present study aims to explain the influence of rock properties on wear of M and SR grade rubber used in top cover of conveyor belts. Extensive laboratory experiments were conducted under four combinations of normal load and sliding speed. The wear of both the rubber types were analyzed based on the rock properties like shear strength, abrasivity index and fractal dimension. A fully instrumented testing set up was used to study the wear of rubber samples under different operating conditions. In general, wear was higher for M grade rubber compared to SR grade rubber. Increase in shear strength of rocks depicts decreasing trend for the wear of M and SR grade rubber at lower load conditions. Moreover, a higher load combination displays no definite trend in both the rubbers. The strong correlation between the wear of rubber and frictional power for all rubber-rock combinations has given rise to the parameter A, which reflects the relative compatibility between the rubber and rock. Increase of Cerchar’s Abrasivity Index of rocks shows gradual enhancement in wear for M grade rubber in all the load and speed combinations whereas, it fails in SR grade rubber due to its higher strength. The wear of rubber tends to decrease marginally with the surface roughness of rocks at highest normal load and sliding speed in M grade rubber. However, the wear of M and SR grade rubber is influenced by the surface roughness of rocks.
Źródło:
Archives of Metallurgy and Materials; 2017, 62, 3; 1787-1793
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Impact of Cutting Forces and Chip Microstructure in High Speed Machining of Carbon Fiber - Epoxy Composite Tube
Autorzy:
Allwin Roy, Y.
Gobivel, K.
Vijay Sekar, K. S.
Suresh Kumar, S.
Powiązania:
https://bibliotekanauki.pl/articles/352953.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
composite materials
orthogonal machining
cutting forces
chip microstructure
Opis:
Carbon fiber reinforced polymeric (CFRP) composite materials are widely used in aerospace, automobile and biomedical industries due to their high strength to weight ratio, corrosion resistance and durability. High speed machining (HSM) of CFRP material is needed to study the impact of cutting parameters on cutting forces and chip microstructure which offer vital inputs to the machinability and deformation characteristics of the material. In this work, the orthogonal machining of CFRP was conducted by varying the cutting parameters such as cutting speed and feed rate at high cutting speed/feed rate ranges up to 346 m/min/ 0.446 mm/rev. The impact of the cutting parameters on cutting forces (principal cutting, feed and thrust forces) and chip microstructure were analyzed. A significant impact on thrust forces and chip segmentation pattern was seen at higher feed rates and low cutting speeds.
Źródło:
Archives of Metallurgy and Materials; 2017, 62, 3; 1771-1777
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pseudocapacitive Characteristics of Mg Doped ZnO Nanospheres Prepared by Coprecipitation
Autorzy:
Arul, S.
Senthilnathan, T.
Jeevanantham, V.
Satheesh Kumar, K. V.
Powiązania:
https://bibliotekanauki.pl/articles/2049144.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
zinc oxide
Mg-doped ZnO
coprecipitation
cyclic voltammetry
EiS
Opis:
A n-type semiconductor ZnO has high transmittance features, excellent chemical stability and electrical properties. It is also commonly used in a range of fields, such as gas sensors, photocatalysts, optoelectronics, and solar photocell. Magnesium-doped zinc oxide (Mg-ZnO) nano powders were effectively produced using a basic chemical precipitation process at 45°C. Calcined Mg-ZnO nano powders have been characterized by FTIR, XrD, SEM-EDX and Pl studies. XRD measurements from Mg-ZnO revealed development of a crystalline structure with an average particle size of 85 nm and SEM analysis confirmed the spherical morphology. Electrochemical property of produced Mg-ZnO nanoparticles was analyzed and the specific capacitance value of 729 F g-1 at 0.5 A g-1 current density was recorded and retained a specific capacitance ~100 percent at 2 A g-1 current density.
Źródło:
Archives of Metallurgy and Materials; 2021, 66, 4; 1141-1148
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation on the Effect of Technological Parameters on Emission Factor in 316L Stainless Steel Using Gas Metal Arc Welding
Autorzy:
Satheesh Kumar, K. V.
Selvakumar, P.
Uvanshankar, K. R.
Thirunavukaras, U. S.
Anand, Vijay V.
Vishal, D.
Powiązania:
https://bibliotekanauki.pl/articles/2049738.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
emission factor
shielding gas
Permissible Exposure Limit
health hazards
glass fiber filter
Opis:
Growing awareness for occupational safety in the welding environment needs a sustainable welding system. Welding gases releases toxic tiny particles and gases that inflict severe health consequences in the weld zone are unsolicited. Some of the other main adverse effects are lung disease, hemoptysis, pulmonary inflammation, pneumoconiosis, etc. GMAW procedure has been used for welding 316L stainless steel plates of 3 mm, 5 mm, and 6 mm. Various current configurations with gas flow rate of 5 LPM, 10 LPM and 15 LPM were also used to achieve optimum butt joint performance and to reduce the production rate of fume contributing to cost-effectiveness. In this research a cost-effective fume extraction hood was fabricated for measuring emission factor produced during welding. Various shielding gas compositions including Pure Argon, Pure CO2, 92% Ar+8% CO2 and 88% Ar+12% CO2were used to determine the best operating parameters in the GMAW method. To satisfy the latest Permissible Exposure Limit (PEL) legislation, optimum technical parameters for efficient welding were acknowledged with the lowest emission factor. A maximum reduction of emission factor can be achieved by using Pure Argon. The inclusion of CO2 as a shielding gas mixture gives higher emission factor when compared to Pure Argon. Very low emission factor were witnessed in this research when compared to previous investigations. Lower emission factor of 2941.17 mg /kg of electrode, 4411.76 mg/kg of electrode and 7352.94 mg/kg of electrode were obtained for pure argon as shielding gas with 150 A welding current.
Źródło:
Archives of Metallurgy and Materials; 2021, 66, 2; 609-615
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Review on Parameters Influencing the Rice Breakage and Rubber Roll Wear in Sheller
Autorzy:
Prabhakaran, P.
Ranganathan, R.
Muthu Kumar, V.
Rajasekar, R.
Devakumar, L.
Pal, S. K.
Powiązania:
https://bibliotekanauki.pl/articles/351700.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
rice
rice breakage
rubber roll sheller
Opis:
The present review deals with parameters influencing the rice breakage during rice milling operations and the effect of rubber roll Sheller in rice husk removal process. The main objective of rice milling system is to remove the husk and bran layer to produce the white rice. In this process, rubber roll sheller is used to remove husk from the grains by friction process. If the rubber material is too soft, there may not be sufficient shear force to husk the paddy. Wear will be minimum for rubber material with high hardness but indeed it pronounce the breakage of rice. Hence, for efficient husking the rubber roll material should possess the balance of physico-mechanical properties. Rice breakage depends on several other parameters like the type of harvest, drying temperature, drying methods, physical characteristics of paddy, husking characteristics, paddy moisture content, rubber roller speed, rubber roll pressure, paddy feed rate and fissures. Rubber roll wear depends on the type of rubber material attached to the roller, feed rate, roller speed, pressure etc.
Źródło:
Archives of Metallurgy and Materials; 2017, 62, 3; 1875-1880
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies