Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kim, Eun-Young" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
A Study on the Optimization of Metalloid Contents of Fe-Si-B-C Based Amorphous Soft Magnetic Materials Using Artificial Intelligence Method
Autorzy:
Choi, Young-Sin
Kwon, Do-Hun
Lee, Min_Woo
Cha, Eun-Ji
Jeon, Junhyub
Lee, Seok-Jae
Kim, Jongryoul
Kim, Hwi-Jun
Powiązania:
https://bibliotekanauki.pl/articles/2174571.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Fe-based amorphous
soft magnetic properties
artificial intelligence
machine learning
random forest regression
Opis:
The soft magnetic properties of Fe-based amorphous alloys can be controlled by their compositions through alloy design. Experimental data on these alloys show some discrepancy, however, with predicted values. For further improvement of the soft magnetic properties, machine learning processes such as random forest regression, k-nearest neighbors regression and support vector regression can be helpful to optimize the composition. In this study, the random forest regression method was used to find the optimum compositions of Fe-Si-B-C alloys. As a result, the lowest coercivity was observed in Fe80.5Si3.63B13.54C2.33 at.% and the highest saturation magnetization was obtained Fe81.83Si3.63B12.63C1.91at.% with R2 values of 0.74 and 0.878, respectively.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 4; 1459--1463
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Prediction of Optimized Metalloid Content in Fe-Si-B-P Amorphous Alloys Using Artificial Intelligence Algorithm
Autorzy:
Lee, Min_Woo
Choi, Young-Sin
Kwon, Do-Hun
Cha, Eun-Ji
Kang, Hee-Bok
Jeong, Jae-In
Lee, Seok-Jae
Kim, Hwi-Jun
Powiązania:
https://bibliotekanauki.pl/articles/2176648.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Fe-based amorphous alloy
metalloid elements
artificial intelligence
coercivity
saturation magnetization
Opis:
Artificial intelligence operated with machine learning was performed to optimize the amount of metalloid elements (Si, B, and P) subjected to be added to a Fe-based amorphous alloy for enhancement of soft magnetic properties. The effect of metalloid elements on magnetic properties was investigated through correlation analysis. Si and P were investigated as elements that affect saturation magnetization while B was investigated as an element that affect coercivity. The coefficient of determination R2 (coefficient of determination) obtained from regression analysis by learning with the Random Forest Algorithm (RFR) was 0.95 In particular, the R2 value measured after including phase information of the Fe-Si-B-P ribbon increased to 0.98. The optimal range of metalloid addition was predicted through correlation analysis method and machine learning.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 4; 1539--1542
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies