Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Binder, K." wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
The Influence of Moulding Sand Type on Mechanical and Thermal Deformation
Autorzy:
Grabarczyk, A.
Major-Gabryś, K.
Dobosz, S. M.
Jakubski, J.
Bolibruchová, D.
Brůna, M.
Pastirčák, R.
Powiązania:
https://bibliotekanauki.pl/articles/353843.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
foundry engineering
moulding sand
core sand
organic binder
inorganic binder
mechanical deformation
thermal deformation
Opis:
Casting industry has been enriched with the processes of mechanization and automation in production. They offer both better working standards, faster and more accurate production, but also have begun to generate new opportunities for new foundry defects. This work discusses the disadvantages of processes that can occur, to a limited extend, in the technologies associated with mould assembly and during the initial stages of pouring. These defects will be described in detail in the further part of the paper and are mainly related to the quality of foundry cores, therefore the discussion of these issues will mainly concern core moulding sands. Four different types of moulding mixtures were used in the research, representing the most popular chemically bonded moulding sands used in foundry practise. The main focus of this article is the analysis of the influence of the binder type on mechanical and thermal deformation in moulding sands.
Źródło:
Archives of Metallurgy and Materials; 2019, 64, 1; 347-351
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selection of Hardening Technology of Moulding Sand with Hydrated Sodium Silicate Binder Devoted to Aluminum Alloys Ablation Casting
Autorzy:
Major-Gabryś, K.
Hosadyna-Kondracka, M.
Grabarczyk, A.
Kamińska, J.
Powiązania:
https://bibliotekanauki.pl/articles/354196.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
foundry engineering
ablation casting
moulding sands
hydrated sodium silicate
hot-box technology
Opis:
The ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and watersoluble binder. After pouring the mould with liquid metal, while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. The following paper focuses on the selection of moulding sands with hydrated sodium silicate technologies for moulds devoted to the ablation casting of aluminum alloys. It has been proposed to use different types of moulding sands with a water-soluble binder, which is hydrated sodium silicate. The authors showed that the best kind of moulding sands for moulds for Al alloy casting will be moulding sands hardened with physical factors – through dehydration. The use of microwave hardened moulding sands and moulding sands made in hot-box technology has been proposed. The tests were carried out on moulding sands with different types of modified binder and various inorganic additives. The paper compares viscosity of different binders used in the research and thermal degradation of moulding sands with tested binders. The paper analyzes the influence of hardening time periods on bending strength of moulding sands with hydrated sodium silicate prepared in hot-box technology. The analysis of literature data and own research have shown that molding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties for the ablation foundry of Al alloys.
Źródło:
Archives of Metallurgy and Materials; 2019, 64, 1; 359-364
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of the Type of Inorganic Binder on the Properties of Microwave-Hardened Moulding Sands for Ablation Casting Technology
Autorzy:
Puzio, S.
Kamińska, J.
Angrecki, M.
Major-Gabryś, K.
Powiązania:
https://bibliotekanauki.pl/articles/353306.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
innovative technologies
ablation casting
moulding sands
microwave hardening
environmentally friendly inorganic binders
Opis:
The aim of this study is to demonstrate the possibility of using moulding sands based on inorganic binders hardened in a microwave chamber in the technology of ablation casting of aluminium alloys. The essence of the ablation casting technology consists in this that a mould with a water-soluble binder is continuously washed with water immediately after being poured with liquid alloy until its complete erosion takes place. The application of an environmentally friendly inorganic binder improves the ecology of the whole process, while microwave hardening of moulding sands allows moulds to be made from the sand mixture containing only a small amount of binder. The studies described in this article included microwave-hardened sand mixtures containing the addition of selected inorganic binders available on the market. The strength of the sands with selected binders added in an amount of 1.0; 1.5 and 2.0 parts by mass was tested. As a next step, the sand mixtures with the strength optimal for ablation casting technology, i.e. about 1.5 MPa, were selected and tested for the gas forming tendency. In the four selected sand mixtures, changes occurring in the samples during heating were traced. Tests also included mould response to the destructive effect of ablation medium, which consisted in the measurement of time necessary for moulds to disintegrate while washed with water. Tests have shown the possibility of using environmentally friendly, microwave-hardened moulding sands in ablation casting of aluminium alloys.
Źródło:
Archives of Metallurgy and Materials; 2020, 65, 4; 1385-1390
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Influence of the Modified Ablation Casting on Casts Properties Produced in Microwave Hardened Moulds with Hydrated Sodium Silicate Binder
Autorzy:
Major-Gabryś, K.
Hosadyna-Kondracka, M.
Puzio, S.
Kamińska, J.
Angrecki, M.
Powiązania:
https://bibliotekanauki.pl/articles/352738.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
moulding sand
ablation casting
hydrated sodium silicate
microwave hardening
mechanical properties of casting
Opis:
The ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and water-soluble binder. After pouring the mould with liquid metal the mould is destructed (washed out) using a stream of cooling medium, which in this case is water. The process takes place while the casting is still solidifying. The following paper focuses on testing the influence of the modified ablation casting of aluminum alloy on casts properties produced in moulds with hydrated sodium silicate binder. The authors showed that the best kind of moulding sands for Al alloy casting will be those hardened with physical factors – through dehydration. The analysis of literature data and own research have shown that the moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties for the modified ablation casting of Al alloys. In the paper the use of microwave hardened moulding sands has been proposed. The moulds were prepared in the matrix specially designed for this technology. Two castings from the AlSi7Mg alloy were made; one by traditional gravity casting and the other by gravity casting using ablation. The conducted casts tests showed that the casting made in modified ablation casting technology characterizes by higher mechanical properties than the casting made in traditional casting technology. In both experimental castings the directional solidification was observed, however in casting made by ablation casting, dimensions of dendrites in the structure at appropriate levels were smaller.
Źródło:
Archives of Metallurgy and Materials; 2020, 65, 1; 497-502
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies