Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gupta, S. M." wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Estimating the compressive strength of concrete, using vacuum dewatering technique
Autorzy:
Subhash, D.
Gupta, S. M.
Setia, S.
Pavlykivskyi, V.
Powiązania:
https://bibliotekanauki.pl/articles/378711.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
vacuum dewatering
concrete compressive strength
artificial neural network
Support Vector Machine
odwadnianie próżniowe
wytrzymałość betonu na ściskanie
sztuczna sieć neuronowa
maszyna wektorów wspierających
Opis:
Purpose: Investigate the potential of vacuum dewatering process of on three different grades of concrete namely M20, M30 and M40 to evaluate its compressive strength. Design/methodology/approach: For this study a data set of 90 experimental observations obtained from laboratory testing with and without application of vacuum dewatering after designing and casting the concrete of said three grades. The standard cubes of size 150 mm × 150 mm × 150 mm were obtained by core cutting and tested for compression after 3, 7, 14, 21 and 28 days of proper curing. Accuracy of prediction of compressive strength of concrete by application of M5P, ANN and SVM as artificial intelligence techniques and their feasibility are assessed to estimate the compressive strength of the concrete enacted with vacuum dewatering technique. A total data set was segregated in two groups. A group of 63 observations was used for model development and smaller group of 27 observations was used for testing the models. Findings: Overall performance of ANN based developed model is better than M5P and SVM based models for predicting the compressive strength of concrete for this data set. Research limitations/implications: Investigated three different grades of concrete namely M20, M30 and M40 to evaluate its compressive strength. The experimental research involved only testing of cubes only. Practical implications: Using ANN based developed model makes it possible to quickly and accurately predict the compressive strength of concrete. Originality/value: The results of comparing three models for predicting the compressive strength of concrete and the optimal values of ANN based developed models are presented. Earlier no one has applied M5P, ANN and SVM modelling to predict the compressive strength of vacuum dewatered concrete.
Źródło:
Archives of Materials Science and Engineering; 2019, 99, 1/2; 30-41
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies