Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "percolation" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Structure Modelling Based on Percolation Theory
Autorzy:
Trzaskowski, W.
Myszka, D.
Powiązania:
https://bibliotekanauki.pl/articles/381630.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
design of materials
percolation theory
incremental manufacturing
3D printing
projektowanie materiałów
teoria perkolacji
drukowanie 3D
Opis:
The paper discusses the possibility of application of percolation theory to model the structure of materials in a virtual space. The designed models were transferred to real space using modern incremental manufacturing techniques like 3D printing. Studies of model materials of this type based on percolation theory are expected to provide more accurate knowledge of the problem, which is extremely important from the point of view of the properties of most construction materials. Reference of percolation phenomena to materials science is more and more frequently done in the design of various types of composite materials, such as e.g. conductive composites. In this study, the percolation theory has been used to design in microscale an optimum material through model analysis done in macroscale. Since studies of percolation in polycrystalline materials are difficult, and there are also some technical limitations imposed on the evaluation done in a volume of material, this phenomenon is usually examined in a simplified manner, which means that it is reduced only to statistical analysis of potential percolation with determination of its threshold value. To generate a potential structure based on percolation theory, popular computer programmes for solid modelling were used. Real shapes were conferred to the designed models using a widely known technique of 3D printing. It allows the production of parts in ABS material. The subject of the present study combines modern design techniques with modern manufacturing techniques, relating both to the fundamentals of materials science. Today's software tools enable creating more complex solids, while their transfer to reality allows better understanding of dependencies that exist in the structure of materials. The originality of this study consists in the art of creating new construction materials with planned properties. The article offers a new approach to the capabilities of scheduling modern engineering materials with the help of percolation theory.
Źródło:
Archives of Foundry Engineering; 2014, 14, 3 spec.; 71-74
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of Microstructure Images Referred to Percolation Theory
Autorzy:
Trzaskowski, W.
Sobaszek, W.
Myszka, D.
Świłło, S.
Powiązania:
https://bibliotekanauki.pl/articles/381165.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
percolation theory
austenitic structure
ferritic structure
duplex steel
ADI
image analysis
cluster analysis
teoria perlokacji
struktura austenityczna
struktura ferrytyczna
stal duplex
analiza obrazu
analiza skupień
Opis:
The paper discusses possible applications of the percolation theory in analysis of the microstructure images of polycrystalline materials. Until now, practical use of this theory in metallographic studies has been an almost unprecedented practice. Observation of structures so intricate with the help of this tool is far from the current field of its application. Due to the complexity of the problem itself, modern computer programmes related with the image processing and analysis have been used. To enable practical implementation of the task previously established, an original software has been created. Based on cluster analysis, it is used for the determination of percolation phenomena in the examined materials. For comparative testing, two two-phase materials composed of phases of the same type (ADI matrix and duplex stainless steel) were chosen. Both materials have an austenitic - ferritic structure. The result of metallographic image analysis using a proprietary PERKOLACJA.EXE computer programme was the determination of the content of individual phases within the examined area and of the number of clusters formed by these phases. The outcome of the study is statistical information, which explains and helps in better understanding of the planar images and real spatial arrangement of the examined material structure. The results obtained are expected to assist future determination of the effect that the internal structure of two-phase materials may have on a relationship between the spatial structure and mechanical properties.
Źródło:
Archives of Foundry Engineering; 2015, 15, 1; 109-112
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies