Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "A356" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Effect of Sr and Ti Addition on the Corrosion Behaviour of Al-7Si-0.3Mg Alloy
Autorzy:
Uludag, M.
Kocabas, M.
Dispinar, D.
Cetin, R.
Consever, N.
Powiązania:
https://bibliotekanauki.pl/articles/381519.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
A356 alloy
bifilm index
grain refinement
modification
electrochemical corrosion
stop A356
ziarna
modyfikacja
korozja elektrochemiczna
Opis:
In the present study, the corrosion behaviour of A356 (Al-7Si-0.3Mg) alloy in 3.5% NaCl solution has been evaluated using cyclic/potentiodynamic polarization tests. The alloy was provided in the unmodified form and it was then modified with AlTi5B1 for grain refinement and with AlSr15 for Si modifications. These modifications yield to better mechanical properties. Tensile tests were performed. In addition, bifilm index and SDAS values were calculated and microstructure of the samples was investigated. As a result of the corrosion test, the Ecorr values for all conditions were determined approximately equal, and the samples were pitted rapidly. The degassing of the melt decreased the bifilm index (i.e. higher melt quality) and thereby the corrosion resistance was increased. The lowest corrosion rate was founded at degassing and as-received condition (3.9x10-3 mm/year). However, additive elements do not show the effect which degassing process shows.
Źródło:
Archives of Foundry Engineering; 2017, 17, 2; 125-130
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of Fracture Stress with Regard to Porosity in Cast A356 Alloy
Autorzy:
Sahin, H.
Atik, M.
Tezer, F.
Temel, S.
Aydin, O.
Kesen, O.
Gursoy, O.
Dispinar, Derya
Powiązania:
https://bibliotekanauki.pl/articles/2079787.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
A356
casting defects
mechanical properties
porosity
fracture stress
Bifilm
stop A356
wady odlewnicze
właściwości mechaniczne
porowatość
naprężenia
Opis:
Production of the defect-free casting of aluminium alloys is the biggest challenge. Porosity is known to be the most important defect. Therefore, many cast parts are subjected to several non-destructive tests in order to check their acceptability. There are several standards, yet, the acceptance limit of porosity size and distribution may change according to the customer design and requirements. In this work, the aim was targeted to evaluate the effect of size, location, and distribution of pores on the tensile properties of cast A356 alloy. ANSYS software was used to perform stress analysis where the pore sizes were changed between 0.05 mm to 3 mm by 0.05 mm increments. Additionally, pore number was changed from 1 to 5 where they were placed at different locations in the test bar. Finally, bifilms were placed inside the pore at different sizes and orientations. The stress generated along the pores was recorded and compared with the fracture stress of the A356 alloy. It was found that as the bifilm size was getting smaller, their effect on tensile properties was lowered. On the other hand, as bifilms were larger, their orientation became the dominant factor in determining the fracture.
Źródło:
Archives of Foundry Engineering; 2021, 21, 4; 21-28
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Role of Metal Quality and Porosity Formation in Low Pressure Die Casting of A356: Experimental Observations
Autorzy:
Gursoy, O.
Nordmak, A.
Syversten, F.
Colak, M.
Tur, K.
Dispinar, D.
Powiązania:
https://bibliotekanauki.pl/articles/1837851.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
die casting
alloy A356
solidification
LPDC
aluminium
quality of alloy
bifilm
porosity
odlewanie ciśnieniowe
stop A356
krzepnięcie
właściwości stopu
porowatość
Opis:
Porosity is one of the major problems in casting operations and there are several discussions in the literature about the porosity formation in aluminum castings. Bifilms are the defects that are introduced into the melt by turbulence. They can be detected with reduced pressure test and presented numerically by measuring bifilm index. The measure of bifilm index is the sum of total oxide length given in millimeters from the cross-section of reduced pressure test sample solidified under 0.01 MPa. In this work, low pressure die casting (LPDC) unit was built in an attempt to enhance the producibility rate. The unit consists of a pump housing that was placed inside the melt in the melting furnace where the pressure was applied instead of the whole melt surface. It was observed that the melt quality of A356 alloy was deteriorated over time which had led to higher porosity. This was attributed to the increased oxide thickness of the bifilm by the consumption of air in between the folded oxides. A relationship was found between bifilm index and pore formation.
Źródło:
Archives of Foundry Engineering; 2021, 21, 1; 5-10
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Observation of Hot Tearing in Sr-B Modified A356 Alloy
Autorzy:
Uludağ, M.
Çetin, R.
Dışpınar, D.
Powiązania:
https://bibliotekanauki.pl/articles/380985.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
A356 alloy
casting technology
melt quality
grain refinement
hot tearing
stop A356
technologia odlewania
jakość topienia
rozdrobnienie ziarna
pękanie na gorąco
Opis:
In this work, T-shaped mould design was used to generate hot spot and the effect of Sr and B on the hot tearing susceptibility of A356 was investigated. The die temperature was kept at 250ºC and the pouring was carried out at 740ºC. The amonut of Sr and B additions were 30 and 10 ppm, respectively. One of the most important defects that may exist in cast aluminium is the presence of bifilms. Bifilms can form by the surface turbulence of liquid metal. During such an action, two unbonded surfaces of oxides fold over each other which act as a crack. Therefore, this defect cause many problems in the cast part. In this work, it was found that bifilms have significant effect over the hot tearing of A356 alloy. When the alloy solidifies directionally, the structure consists of elongated dendritic structure. In the absence of equiaxed dendrites, the growing tips of the dendrites pushed the bifilms to open up and unravel. Thus, leading to enlarged surface of oxide to become more harmful. In this case, it was found that these bifilms initiate hot tearing.
Źródło:
Archives of Foundry Engineering; 2017, 17, 4; 165-168
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Role of Metal Quality and Porosity Formation in Low Pressure Die Casting of A356: Experimental Observations
Autorzy:
Gursoy, O.
Nordmak, A.
Syversten, F.
Colak, M.
Tur, K.
Dispinar, D.
Powiązania:
https://bibliotekanauki.pl/articles/1837813.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
die casting
alloy A356
solidification
LPDC
aluminium
quality of alloy
bifilm
porosity
odlewanie ciśnieniowe
stop A356
krzepnięcie
właściwości stopu
porowatość
Opis:
Porosity is one of the major problems in casting operations and there are several discussions in the literature about the porosity formation in aluminum castings. Bifilms are the defects that are introduced into the melt by turbulence. They can be detected with reduced pressure test and presented numerically by measuring bifilm index. The measure of bifilm index is the sum of total oxide length given in millimeters from the cross-section of reduced pressure test sample solidified under 0.01 MPa. In this work, low pressure die casting (LPDC) unit was built in an attempt to enhance the producibility rate. The unit consists of a pump housing that was placed inside the melt in the melting furnace where the pressure was applied instead of the whole melt surface. It was observed that the melt quality of A356 alloy was deteriorated over time which had led to higher porosity. This was attributed to the increased oxide thickness of the bifilm by the consumption of air in between the folded oxides. A relationship was found between bifilm index and pore formation.
Źródło:
Archives of Foundry Engineering; 2021, 21, 1; 5-10
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling and Experimental Characterization of Processing Parameters in Vertical Twin Roll Casting of Aluminium Alloy A356
Autorzy:
Dhindaw, B.
Singh, S.
Mandal, A.
Pandey, A.
Powiązania:
https://bibliotekanauki.pl/articles/1840923.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
alloy A356
structural materials
microstructures
vertical twin-roll casting
roll speeds
numerical modelling
stop A356
mikrostruktura
odlewanie dwuwalcowe
prędkości rolek
modelowanie numeryczne
Opis:
Production of near net shape thin strips using vertical twin roll casting method has been studied. In a typical VTRC process, the simultaneous action of solidification and rolling makes the process quite attractive as well as complicated. An industrially popular alloy A356 has been chosen for the VTRC processing. It is challenging to identify VTRC processing parameters for the alloy to produce thin strips because of its freezing range and complex composition. In the present work processing parameters of VTRC like roll speed, roll gap, melt superheat and the interface convective heat transfer coefficient have been investigated through modelling of the process. The mathematical model was developed which simultaneously solves the heat transfer, fluid flow and solidification, using commercial software COMSOL Multiphysics 5.4. VTRC sheets of alloy A356 were produced in an experimental set up and attempts were made to correlate the microstructures of VTRC A356 alloy to that predicted from the numerical studies to validate the model.
Źródło:
Archives of Foundry Engineering; 2020, 20, 4; 121-132
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evolution of Aluminium Melt Quality of A356 After Several Recycling
Autorzy:
Gursoy, O.
Erzi, E.
Tur, K.
Dispinar, D.
Powiązania:
https://bibliotekanauki.pl/articles/1840918.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
A356
recycling
melt quality
reduce pressure test
bifilm index
recykling
topnienie
próba ciśnieniowa
Opis:
Recyclability is one of the great features of aluminium and its alloys. However, it has been typically considered that the secondary aluminium quality is low and bad. This is only because aluminium is so sensitive to turbulence. Uncontrolled transfer and handling of the liquid aluminium results in formation of double oxide defects known as bifilms. Bifilms are detrimental defects. They form porosity and deteriorate the properties. The detection and quantification of bifilms in liquid aluminium can be carried out by bifilm index measured in millimetres as an indication of melt cleanliness using Reduced Pressure Test (RPT). In this work, recycling efficiency and quality change of A356 alloy with various Ti additions have been investigated. The charge was recycled three times and change in bifilm index and bifilm number was evaluated. It was found that when high amount of Ti grain refiner was added, the melt quality was increased due to sedimentation of bifilms with Ti. When low amount of Ti is added, the melt quality was degraded.
Źródło:
Archives of Foundry Engineering; 2020, 20, 4; 61-66
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Chip Amount on Microstructural and Mechanical Properties of A356 Aluminum Casting Alloy
Autorzy:
Kaya, A. Y.
Özaydın, O.
Yağcı, T.
Korkmaz, A.
Armakan, E.
Çulha, O.
Powiązania:
https://bibliotekanauki.pl/articles/2079825.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
A356
gravity casting
chip melting
mechanical properties
recycling
odlewanie grawitacyjne
topienie
właściwości mechaniczne
recykling
Opis:
Aluminum casting alloys are widely used in especially automotive, aerospace, and other industrial applications due to providing desired mechanical characteristics and their high specific strength properties. Along with the increase of application areas, the importance of recycling in aluminum alloys is also increasing. The amount of energy required for producing primary ingots is about ten times the amount of energy required for the production of recycled ingots. The large energy savings achieved by using the recycled ingots results in a significant reduction in the amount of greenhouse gas released to nature compared to primary ingot production. Production can be made by adding a certain amount of recycled ingot to the primary ingot so that the desired mechanical properties remain within the boundary conditions. In this study, by using the A356 alloy and chips with five different quantities (100% primary ingots, 30% recycled ingots + 70% primary ingots, 50% recycled ingots + 50% primary ingots, 70% recycled ingots + 30% primary ingots, 100% recycled ingots), the effect on mechanical properties has been examined and the maximum amount of chips that can be used in production has been determined. T6 heat treatment was applied to the samples obtained by the gravity casting method and the mechanical properties were compared depending on the amount of chips. Besides, microstructural examinations were carried out with optical microscopy techniques. As a result, it has been observed that while producing from primary ingots, adding 30% recycled ingot to the alloy composition improves the mechanical properties of the alloy such as yield strength and tensile strength to a certain extent. However, generally a downward pattern was observed with increasing recycled ingot amount.
Źródło:
Archives of Foundry Engineering; 2021, 21, 3; 19-26
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies