Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kamińska, M." wg kryterium: Autor


Wyświetlanie 1-12 z 12
Tytuł:
Research on Selected Types of Lustrous Carbon Carriers After the High - Temperature Pyrolysis
Autorzy:
Kamińska, Jadwiga
Stachowicz, M.
Kubecki, M.
Powiązania:
https://bibliotekanauki.pl/articles/1837781.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
foundry
green moulding sand
lustrous carbon
pyrolysis
core shooting
odlewnia
piasek formierski
węgiel błyszczący
piroliza
Opis:
For research purposes and to demonstrate the differences between materials obtained from the carbonaceous additives to classic green moulding sands, five lustrous carbon carriers available on the market were selected. The following carbonaceous additives were tested: two coal dusts (CD1 and CD2), two hydrocarbon resins (HR1 and HR2) and amorphous graphite (AG1). The studies of products and material effects resulting from the high-temperature pyrolysis of lustrous carbon carriers were focused on determining the tendency to gas evolution, including harmful compounds from the BTEX group (benzene, toluene, ethylbenzene and xylene). Moreover, the content of lustrous carbon (LC), the content of volatile matter and loss on ignition (LOI) of the carbonaceous additives were tested. The solid products formed during high-temperature pyrolysis were used for the quantitative and qualitative evaluation of elemental composition after the exposure to temperatures of 875oC in a protective atmosphere and 950oC in an oxidizing atmosphere. The conducted studies have indicated the necessity to examine the additives to classic green moulding sands, which is of particular importance for the processing, rebonding and storage of waste sand. The studies have also revealed some differences in the quantitative and qualitative composition of elements introduced to classic moulding sands together with the carbonaceous additives that are lustrous carbon carriers. It was also considered necessary to conduct a research on lustrous carbon carriers for their proper and environmentally friendly use in the widely propagated technology of classic green sand system.
Źródło:
Archives of Foundry Engineering; 2021, 21, 1; 56-62
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reclamation of mixtures of spent sands of inorganic and organic type
Autorzy:
Skrzyński, M.
Dańko, R.
Kamińska, J.
Powiązania:
https://bibliotekanauki.pl/articles/381461.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
reclamation
foundry sand
moulding sand
environmental protection
regeneracja
masa formierska
ochrona środowiska
Opis:
The results of investigations of the reclamation of spent moulding and core sands, originated from one of the Polish foundry plants, are presented in the paper. Four mixtures consisting of two types of spent sands (spent moulding sand and spent core sand) were subjected to the regeneration process. Each tested mixture consisted of an inorganic type spent moulding sand and of an organic type spent core sand. Proportions of mutual fractions of spent moulding and core sands in mixtures was 70%-30% and was representative for the waste sands from the foundry, from which these sands originated.
Źródło:
Archives of Foundry Engineering; 2013, 13, 4; 93-96
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Bentonite Clay Addition on the Thermal and Mechanical Properties of Conventional Moulding Sands
Autorzy:
Kamińska, J.
Puzio, S.
Angrecki, M.
Powiązania:
https://bibliotekanauki.pl/articles/383048.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
bentonite
bentonite clay
moulding sand
montmorillonite
strength properties
bentonit
glinka bentonitowa
piasek formierski
montmorylonit
właściwości wytrzymałościowe
Opis:
Bentonites and clays are included in the group of drilling fluids materials. The raw materials are mainly clay minerals, which are divided into several groups, like montmorillonite, kaolinite, illite, biotite, muscovite, nontronite, anorthoclase, microcline, sanidine or rutile, differing in chemical composition and crystal lattice structure. Clay minerals have a layered structure forming sheet units. The layers merge into sheets that build up to form the structure of the mineral. The aim of the studies carried out in the ŁUKASIEWICZ Research Network - Foundry Research Institute is to explore the possibility of using minerals coming from Polish deposits. The article outlines the basic properties of hybrid bentonites, which are a mixture of bentonite clay called beidellite, originating from overburden deposits of the Turoszów Mine, and foundry bentonite from one of the Slovak deposits. As part of the physico-chemical tests of minerals, measurements included in the PN-85/H-11003 standard, i.e. montmorillonite content, water content and swelling index, were carried out. Additionally, the loss on ignition and pH chemical reaction were determined. Based on the thermal analysis of raw materials, carried out in the temperature range from 0 to 1000⁰C, changes occurring in these materials during heating, i.e. thermal stability in contact with liquid metal, were determined. Examinations of the sand mixture based on pure clay and bentonite and of the sand mixture based on hybrid bentonites enabled tracing changes in permeability, compressive strength and tensile strength in the transformation zone as well as compactability referred to the clay content in sand mixture. Selected technological and strength parameters of synthetic sands are crucial for the foundry, because they significantly affect the quality of the finished casting. Based on the analysis of the results, the optimal composition of hybrid bentonite was selected.
Źródło:
Archives of Foundry Engineering; 2020, 20, 1; 111-116
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Effect of Reclaim Primary Quality on Moulding Sand Parameters and Quality of Ductile Iron Casting Surface Layer
Autorzy:
Kamińska, Jadwiga
Angrecki, M.
Puzio, S.
Stachowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/2134210.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
foundry industry
furfuryl resin
reclaim
self-hardening moulding sand
surface quality
ductile iron
przemysł odlewniczy
żywica furfurylowa
masa formierska
masa samoutwardzalna
jakość powierzchni
odlew z żeliwa sferoidalnego
Opis:
The aim of the research was to determine the effect of the primary quality of reclaim from dry mechanical reclamation on the strength properties and service life of moulding sands based on this reclaim. Another aim was to establish the effect of the quality of reclaim, sulphur content - in particular, on the surface quality and thickness of the deformed surface layer in ductile iron castings. The research has revealed differences in the strength parameters and service life (mouldability) of sands based on the tested reclaims, depending on the type of the furfuryl resin used, including resins whose synthesis was done as part of the Żywfur project. Examinations of the structure of the surface layer of test castings poured in moulds made of loose self-hardening sands containing the addition of reclaim have confirmed the occurrence of degenerated spheroidal graphite in this part of the casting. It should be noted here that when massive castings with a long solidification time are made, the graphite degeneration effect can be more visible and the layer with the changed structure can increase in thickness. The research has clearly shown that it is necessary to control the parameters of the reclaim, including sulphur content which is transferred from the hardener and accumulates on the grains. This phenomenon has a negative impact not only on the sand strength and technological properties but also on the surface layer of castings.
Źródło:
Archives of Foundry Engineering; 2022, 22, 2; 83--88
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Wall Thickness on the Microstructure of Ductile Iron Castings Manufactured by the Inmold Process Using a Reaction Chamber
Autorzy:
Kamińska, J.
Angrecki, M.
Stefański, Z.
Palma, A.
Powiązania:
https://bibliotekanauki.pl/articles/382183.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ductile iron
inmold process
reaction chamber
vertical mould parting plane
cast iron microstructure
żeliwo sferoidalne
technologia inmold
komora reakcyjna
mikrostruktura żeliwa
Opis:
In the family of iron-based alloys, ductile iron enjoys the highest rate of development, finding application in various industries. Ductile iron or the cast iron with spheroidal graphite can be manufactured by various methods. One of them is the Inmold spheroidization process characterized by different technological solutions, developed mainly to increase the process efficiency. So far, however, none of the solutions has been based on the use of a reactor made outside the casting mould cavity. The method of spheroidization inside the casting mould using a reaction chamber developed at the Foundry Research Institute is an innovative way of cast iron treatment. The innovative character of this method consists in the use of properly designed and manufactured reactor placed in the casting mould cavity. Owing to this solution, the Inmold process can be carried out in moulds with both horizontal and vertical parting plane. The study presents the results of examinations of the microstructure of graphite precipitates and metal matrix of castings after spheroidization carried out by the Inmold process using a reactor and mould with vertical parting plane. Special pattern assembly was made for the tests to reproduce plates with wall thicknesses of 3; 5; 7; 10; 20 and 30 mm. The content of residual magnesium was determined for all tested castings, while for castings of plates with a wall thickness equal to or larger than 10 mm, testing of mechanical properties was additionally performed.
Źródło:
Archives of Foundry Engineering; 2018, 18, 4; 50-54
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Strength Properties of Ceramic Moulds Containing Spent Moulding Sand After Initial Reclamation
Autorzy:
Angrecki, M.
Kamińska, J.
Jakubski, J.
Wieliczko, P.
Powiązania:
https://bibliotekanauki.pl/articles/379908.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ceramic shell moulds
spending moulding sand
reclaimed sand
lost wax process
strength properties
formy ceramiczne
piasek formierski
właściwości wytrzymałościowe
Opis:
The results of testing the strength properties of experimental ceramic materials containing spending moulding sand after initial mechanical reclamation as a material for subsequent layers of the stucco composition were presented. Tests were carried out on spent moulding sands from various foundry technologies, i.e. sand with furfuryl resin and sand with hydrated sodium silicate. The spent, agglomerated moulding sand has undergone a crushing process. Next, the required granular fractions used for individual layers of the stucco material were separated. Ceramic samples, in which the spent moulding sand was a substitute for fresh silica sand in successive layers of the stucco composition, were prepared. As a reference material, identical ceramic samples were used but with all layers made from the fresh silica sand. Samples prepared in this way were used to determine the bending strength of ceramic materials in the temperature range from 20 to 900ºC. The obtained values of the bending strength have demonstrated that spent moulding sand can be used in investment casting with no adverse effect on the strength of ceramic materials.
Źródło:
Archives of Foundry Engineering; 2019, 3; 5-10
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Use of Phosphate Binder for Ablation Casting of AlSi7Mg Modified TiB Alloy
Autorzy:
Puzio, Sabina
Kamińska, J.
Major-Gabryś, K.
Angrecki, M.
Powiązania:
https://bibliotekanauki.pl/articles/2126893.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ablation casting technology
alumina
phosphate binder
self-hardening sand
inorganic binder
odlewanie ablacyjne
tlenek glinu
spoiwo fosforanowe
piaski samoutwardzalne
spoiwo nieorganiczne
Opis:
The possibilities of using an inorganic phosphate binder for the ablation casting technology are discussed in this paper. This kind of binder was selected for the process due to its inorganic character and water-solubility. Test castings were made in the sand mixture containing this binder. Each time during the pouring liquid alloy into the molds and solidification process of castings, the temperature in the mold was examined. Then the properties of the obtained castings were compared to the properties of the castings solidifying at ambient temperature in similar sand and metal molds. Post-process materials were also examined - quartz matrix and water. It has been demonstrated that ablation casting technology promotes refining of the microstructure, and thus upgrades the mechanical properties of castings (Rm was raised about approx. 20%). Properties of these castings are comparable to the castings poured in metal moulds. However, the post-process water does not meet the requirements of ecology, which significantly reduces the possibility of its cheap disposal.
Źródło:
Archives of Foundry Engineering; 2022, 22, 1; 62--68
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Microwave-Hardened Moulding Sands with Hydrated Sodium Silicate for Modified Ablation Casting
Autorzy:
Puzio, S.
Kamińska, J.
Major-Gabryś, K.
Angrecki, M.
Hosadyna-Kondracka, M.
Powiązania:
https://bibliotekanauki.pl/articles/379775.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ablation casting
moulding sands
environmental protection
hydrated sodium silicate
microwave hardening
odlewanie
masy formierskie
ochrona środowiska
krzemian sodu
hartowanie mikrofalowe
Opis:
The aim of this study is to demonstrate the possibility of using moulds made from the environmentally friendly sands with hydrated sodium silicate in modified ablation casting. The ablation casting technology is primarily intended for castings with diversified wall thickness and complex shapes made in sand moulds. The article presents the effect of binder content and hardening time on the bending strength Rgu of moulding sands with binders based on hydrated sodium silicate hardened by microwave technology. The aim of the research was to develop an optimal sand composition that would provide the strength necessary to make a mould capable of withstanding the modified ablation casting process. At the same time, the sand composition should guarantee the susceptibility of the mould to the destructive action of the ablation medium, which in this case is water. Tests have shown that microwave hardening provides satisfactory moulds’ strength properties even at a low binder content in the sand mixture.
Źródło:
Archives of Foundry Engineering; 2019, 2; 91-96
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparing the Effectiveness of Cast Iron Spheroidization by the Traditional Method and Using a Reaction Chamber (Reactor) Placed in Foundry Mould
Autorzy:
Stefański, Z.
Kamińska, J.
Pamuła, E.
Angrecki, M.
Palma, A.
Powiązania:
https://bibliotekanauki.pl/articles/382171.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ductile iron
spheroidization methods
magnesium alloy
evaluation of effectiveness
żeliwo sferoidalne
metody sferoidyzacji
stop magnezu
skuteczność sferoidyzacji
ocena skuteczności
Opis:
The effectiveness of cast iron spheroidization with FeSiMg master alloy by the traditional method and using a reaction chamber placed in the cavity of foundry mould was compared. The method of cast iron treatment in mould cavity using a reaction chamber is an innovative technology developed by the Foundry Research Institute in Krakow. The effectiveness of the spheroidization process carried out by both methods was checked on a series of test castings. The article also presents the results of metallographic examinations and mechanical testing, including the discussion of magnesium yield and its assimilation rate.
Źródło:
Archives of Foundry Engineering; 2018, 18, 1; 191-195
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Use of Floster S Technology in Modified Ablation Casting of Aluminum Alloys
Autorzy:
Kamińska, J.
Angrecki, M.
Puzio, S.
Hosadyna-Kondracka, M.
Major-Gabryś, K.
Powiązania:
https://bibliotekanauki.pl/articles/379813.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
moulding sands
ablation casting
water glass
floster S
mechanical properties of casting
surface quality
piaski formierskie
odlewanie ablacyjne
szklanka wody
właściwości mechaniczne odlewu
jakość powierzchni
Opis:
Ablation casting is a technological process in which the increased cooling rate causes microstructure refinement, resulting in improved mechanical properties of the final product. This technology is particularly suitable for the manufacture of castings with intricate shapes and thin walls. Currently, the ablation casting process is not used in the Polish industry. This article presents the results of strength tests carried out on moulding sands based on hydrated sodium silicate hardened in the Floster S technology, intended for ablation casting of the AlSi7Mg (AK7) aluminium alloy. When testing the bending and tensile strengths of sands, parameters such as binder and hardener content were taken into account. The sand mixtures were tested after 24h hardening at room temperature. The next stage of the study describes the course of the ablation casting process, starting with the manufacture of foundry mould from the selected moulding mixture and ending in tests carried out on the ready casting to check the surface quality, structure and mechanical properties. The results were compared with the parallel results obtained on a casting gravity poured into the sand mould and solidifying in a traditional way at ambient temperature.
Źródło:
Archives of Foundry Engineering; 2019, 4; 81-86
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Moulding Sand with Inorganic Cordis Binder for Ablation Casting
Autorzy:
Hosadyna-Kondracka, M.
Major-Gabryś, K.
Kamińska, J.
Grabarczyk, A.
Angrecki, M.
Powiązania:
https://bibliotekanauki.pl/articles/382039.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
innovative foundry technology
innovative foundry material
ablation casting
moulding sand
inorganic binder
thermal curing
innowacyjna technologia odlewnicza
innowacyjny materiał odlewniczy
odlewanie ablacyjne
masa formierska
spoiwo nieorganiczne
utwardzanie termiczne
Opis:
The essence of ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and a water-soluble binder. After pouring the mould with liquid metal, while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. This paper focuses on the selection of moulding sands with hydrated sodium silicate for moulds used in the ablation casting. The research is based on the use of Cordis binder produced by the Hüttenes-Albertus Company. It is a new-generation inorganic binder based on hydrated sodium silicate. Its hardening takes place under the effect of high temperature. As part of the research, loose moulding mixtures based on the silica sand with different content of Cordis binder and special Anorgit additive were prepared. The reference material was sand mixture without the additive. The review of literature data and the results of own studies have shown that moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties to be used in the ablation casting process. Additionally, at the Foundry Research Institute in Krakow, preliminary semi-industrial tests were carried out on the use of Cordis sand technology in the manufacture of moulds for ablation casting. The possibility to use these sand mixtures has been confirmed in terms of both casting surface quality and sand reclamation.
Źródło:
Archives of Foundry Engineering; 2018, 18, 4; 110-115
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Effect of Additive "B" on the Properties of Foundry Sands with Hydrated Sodium Silicate Made by Floster Technology
Autorzy:
Izdebska-Szanda, I.
Kamińska, J.
Angrecki, M.
Palma, A.
Stefański, Z.
Powiązania:
https://bibliotekanauki.pl/articles/379919.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
moulding sand
water glass
floster S technology
additive
masa formierska
szkło wodne
technologia floster S
dodatki do mas formierskich
Opis:
The aim of the study was to determine the applicability of a new product added to water glass-containing foundry sands hardened with ethylene glycol diacetate. The new additive designated by the symbol "B" is a composition of aqueous solutions of modified polyalcohols, improving the sand knocking out properties. The scope of studies included testing various mechanical and technological properties of foundry sand mixtures, such as permeability, friability, life cycle of cores and knocking out properties. In the technological studies, two types of water glass with different values of the silica modulus and density, designated as R145 and R150, were used. Moulding sands were prepared with the additive "B". For comparison, reference sands with water glass but without the additive "B" were also made. In Part I of the article, the results of studies of the effect of additive "B" on the properties of foundry sands with water glass hardened by CO2 blowing were discussed.
Źródło:
Archives of Foundry Engineering; 2017, 17, 2; 31-34
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-12 z 12

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies