Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę ""AAS"" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Quantitative and qualitative analysis of slags from zinc and lead metallurgy
Autorzy:
Nocoń, Milena
Korus, Irena
Loska, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/27311569.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
heavy metal slags
BCR sequential extraction
zinc and lead metallurgy
AAS
Opis:
The zinc and lead industry generates substantial quantities of waste. Among the many types of wastes, such as dust or liquid, a large proportion are solid waste such as slags. The purpose of the study was the qualitative and quantitative assessment of the short rotary kiln slags and slags deposited in a hazardous waste landfill originating from zinc and lead metallurgy. This assessment represents the primary step in evaluating materials such as slags concerning their potential for substantial applications, such as process for metal separation. Additionally, this evaluation forms the basis for a comprehensive environmental study. The concentrations of the four predominant metals – Fe>Pb>Zn>Cu – and accompanying elements – Na>Ca>K>Ni>Mn>Cr – were determined using atomic absorption spectroscopy (AAS) after aqua regia digestion. A large variation was found in the phase analysis of the studied materials based on SEM, XRD, X-ray microanalysis, and BCR sequential extraction. The BCR analysis revealed the occurrence of major metals in four different fractions: acid-soluble, reducible, oxidizable, and residual. Pb was mainly present in the acid-soluble fraction, while Fe, Cu, and Zn were present in the residual fraction.
Źródło:
Archives of Environmental Protection; 2023, 49, 3; 26--37
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The evaluation and determination of heavy metals pollution in edible vegetables, water and soil in the south of Tehran province by GIS
Autorzy:
Shirkhanloo, H.
Mirzahosseini, S. A. H.
Shirkhanloo, N.
Moussavi-Najarkola, S. A.
Farahani, H.
Powiązania:
https://bibliotekanauki.pl/articles/204640.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
heavy metals
environmental pollution
vegetables
agricultural soil
agricultural water
geographic information systems
GIS
Atomic Absorption Spectrometry
AAS
Opis:
In this study, heavy metals pollutions in waters, soils and vegetables were investigated from farms, near oil refinery in south of Tehran city, Iran (Shahre Ray). The most important heavy metals in Iranian oil are vanadium, cobalt, nickel, arsenic and mercury (V, Co, Ni, As, Hg). In this region, the concentration of heavy metals in soils, well waters and leafy edible vegetables were evaluated in ten different points of farms. Geographic information systems (GIS) were used to estimate the levels of heavy metals concentration at unmeasured locations. After sample preparation, concentrations of heavy metals in vegetables, soils and waters were determined by atomic absorption spectrometry (AAS). Five different leafy edible vegetables from farms, i.e., Persian leek, dill, parsley, spinach and radish were sampled in spring, summer and autumn 2012. In vegetables and well water samples, the concentrations of V, Ni and Co were above the permissible limit of heavy metals as compared to WHO guidelines and the concentrations of these metals in agricultural soils were found to be lower in accordance to soil references. The industrial waste waters had high concentration of heavy metals in this area. In consequence, the results of this study indicate that industrial waste water can cause pollution in well waters and edible vegetables. So, this region is not suitable for cultivation and growing vegetables.
Źródło:
Archives of Environmental Protection; 2015, 41, 2; 64-74
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multivariate Statistical Analyses on Arsenic Occurrence in Rybnik Reservoir
Wielowymiarowa analiza statystyczna występowania arsenu w Zbiorniku Rybnickim
Autorzy:
Widziewicz, K.
Loska, K.
Powiązania:
https://bibliotekanauki.pl/articles/204937.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
specjacja
arsen nieorganiczny
wielowymiarowa analiza
Zbiornik Rybnicki
heated water
speciation
inorganic arsenic
HG-AAS
multivariate analysis
occurence
Rybnik Reservoir
Opis:
Popular statistical techniques, such as Spearman's rank correlation matrix, principal component analysis (PCA) and multiple linear regression analysis were applied to analyze a large set of water quality data of the Rybnik Reservoir generated during semiannual monitoring. Water samples collected at 9 sampling sites located along the main axis of the reservoir were tested for 14 selected parameters: concentrations of co-occurring elements, ions and physicochemical parameters. The aim of this study was to estimate the impact of those parameters on inorganic arsenic occurrence in Rybnik Reservoir water by means of multivariate statistical methods. The spatial distribution of arsenic in Rybnik Power Station reservoir was also included. Inorganic arsenic As(III), As(V) concentrations were determined by hydride generation method (HG-AAS) using SpectrAA 880 spectrophotometer (Varian) coupled with a VGA-77 system for hydride generation and ECT-60 electrothermal furnace. Spearman's rank correlation matrix was used in order to find existing correlations between total inorganic arsenic (AsTot) and other parameters. The results of this analysis suggest that As was positively correlated with PO43-; Fe and TDS. PCA confirmed these observations. Principal component analysis resulted in three PC's explaining 57% of the total variance. Loading values for each component indicate that the processes responsible for As release and distribution in Rybnik Reservoir water were: leaching from bottom sediments together with other elements like Cu, Cd, Cr, Pb, Zn, Ni, Ca (PC1) and co-precipitation with PO43-, Fe and Mn (PC3) regulated by physicochemical properties like T and pH (PC2). Finally, multiple linear regression model has been developed. This model incorporates only 8 (T, pH, PO43-, Fe, Mn, Cr, Cu, TDS) out of initial 14 variables, as the independent predictors of total As contamination level. This study illustrates the usefulness of multivariate statistical techniques for analysis and interpretation of complex environmental data sets.
Do analizy dużego zbioru danych pochodzących z półrocznego monitoringu wody Zbiornika Rybnickiego zastosowano popularne techniki statystyczne takie jak: macierz korelacji rang Spearmana, analiza głównych składowych (PCA) oraz regresja wieloraka. Próbki wody do badań pobierano z 9 różnych stanowisk rozmieszczonych wzdłuż głównej osi zbiornika i testowano pod kątem 14 wybranych parametrów: stężeń współwystępujących pierwiastków, jonów oraz parametrów fizykochemicznych. Celem pracy była ocena wpływu tych parametrów na występowanie arsenu nieorganicznego w wodzie Zbiornika Rybnickiego za pomocą wielowymiarowych metod statystycznych. W pracy zamieszczono także wyniki przestrzennego rozkładu arsenu w zbiorniku Elektrowni Rybnik. Stężenia nieorganicznych form arsenu As(III), As(V) oznaczano metodą generowania wodorków (HG-AAS) wykorzystując spektrometr absorpcji atomowej SpectrAA 880 (Varian), rozbudowany o układ do generacji wodorków VGA-77 oraz elektrotermiczny piec ETC-60. W celu znalezienia korelacji między całkowitym arsenem nieorganicznym (AsTot), a innymi parametrami wykonano macierz korelacji rang Spearmana. Wyniki tej analizy sugerują, że As był dodatnio skorelowany z PO43-; Fe, TDS. Potwierdzeniem tych obserwacji były wyniki analizy PCA. Analiza głównych składowych pozwoliła na wyodrębnienie ze zbioru danych 3 głównych składowych wyjaśniających 57% całkowitej zmienności. Wartości ładunków poszczególnych czynników wskazują, że procesami, które w największym stopniu wpływały na uwalnianie oraz dystrybucję As w wodzie Zbiornika Rybnickiego były: wymywanie z osadów dennych wraz z innymi pierwiastkami takimi jak: Cu, Cd, Cr, Pb, Zn, Ni, Ca (PC1), współstrącanie z Fe, Mn, PO43- (PC3) regulowane przez czynniki fizykochemiczne jak T czy pH (PC2). Końcowy etap analizy wyników obejmował zbudowanie modelu regresji wielorakiej. Model obejmował jedynie 8 (T, pH, PO43-, Fe, Mn, Cr, Cu, TDS) spośród 14 wyjściowych zmiennych, które służyły jako niezależne estymatory do oszacowania stopnia zanieczyszczenia wody arsenem. Praca ta ilustruje przydatność wielowymiarowych technik statystycznych do analizy i interpretacji złożonych zbiorów danych pochodzących z badań środowiskowych.
Źródło:
Archives of Environmental Protection; 2012, 38, 2; 11-23
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies