Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "particle swarm optimization algorithm" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Optimization of electric and magnetic field intensities in proximity of power lines using genetic and particle swarm algorithms
Autorzy:
Król, K.
Machczyński, W.
Powiązania:
https://bibliotekanauki.pl/articles/141588.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
power line
electric field
magnetic field
optimization
genetic algorithm
particle swarm algorithm
Opis:
The paper presents optimization of power line geometrical parameters aimed to reduce the intensity of the electric field and magnetic field intensity under an overhead power line with the use of a genetic algorithm (AG) and particle swarm optimization (PSO). The variation of charge distribution along the conductors as well as the sag of the overhead line and induced currents in earth wires were taken into account. The conductor sag was approximated by a chain curve. The charge simulation method (CSM) and the method of images were used in the simulations of an electric field, while a magnetic field were calculated using the Biot–Savart law. Sample calculations in a three-dimensional system were made for a 220 kV single – circuit power line. A comparison of the used optimization algorithms was made.
Źródło:
Archives of Electrical Engineering; 2018, 67, 4; 829-843
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Economic dispatch in power system networks including renewable energy resources using various optimization techniques
Autorzy:
Hafiz, Abrar Mohamed
Abdelrahman, M. Ezzat
Temraz, Hesham
Powiązania:
https://bibliotekanauki.pl/articles/1841222.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Economic Dispatch (ED)
Particle Swarm Optimization (PSO)
Sine-Cosine
Algorithm (SCA)
Photovoltaic (PV)
Opis:
Economic dispatch (ED) is an essential part of any power system network. ED is how to schedule the real power outputs from the available generators to get the minimum cost while satisfying all constraints of the network. Moreover, it may be explained as allocating generation among the committed units with the most effective minimum way in accordance with all constraints of the system. There are many traditional methods for solving ED, e.g., Newton-Raphson method Lambda-Iterative technique, Gaussian-Seidel method, etc. All these traditional methods need the generators’ incremental fuel cost curves to be increasing linearly. But practically the input-output characteristics of a generator are highly non-linear. This causes a challenging non-convex optimization problem. Recent techniques like genetic algorithms, artificial intelligence, dynamic programming and particle swarm optimization solve nonconvex optimization problems in a powerful way and obtain a rapid and near global optimum solution. In addition, renewable energy resources as wind and solar are a promising option due to the environmental concerns as the fossil fuels reserves are being consumed and fuel price increases rapidly and emissions are getting higher. Therefore, the world tends to replace the old power stations into renewable ones or hybrid stations. In this paper, it is attempted to enhance the operation of electrical power system networks via economic dispatch. An ED problem is solved using various techniques, e.g., Particle Swarm Optimization (PSO) technique and Sine-Cosine Algorithm (SCA). Afterwards, the results are compared. Moreover, case studies are executed using a photovoltaic-based distributed generator with constant penetration level on the IEEE 14 bus system and results are observed. All the analyses are performed on MATLAB software.
Źródło:
Archives of Electrical Engineering; 2021, 70, 3; 643-655
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Allocation of real power generation based on computing over all generation cost: an approach of Salp Swarm Algorithm
Autorzy:
Devarapalli, Ramesh
Sinha, Nikhil Kumar
Rao, Bathina Venkateswara
Knypiński, Łukasz
Lakshmi, Naraharisetti Jaya Naga
García Márquez, Fausto Pedro
Powiązania:
https://bibliotekanauki.pl/articles/1841291.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
economic load dispatch
heuristic algorithms
optimization
Particle Swarm
Algorithm
Salp Swarm Algorithm
ekonomiczna wysyłka ładunku
algorytmy heurystyczne
optymalizacja
rój cząstek
algorytm
Opis:
Economic Load Dispatch (ELD) is utilized in finding the optimal combination of the real power generation that minimizes total generation cost, yet satisfying all equality and inequality constraints. It plays a significant role in planning and operating power systems with several generating stations. For simplicity, the cost function of each generating unit has been approximated by a single quadratic function. ELD is a subproblem of unit commitment and a nonlinear optimization problem. Many soft computing optimization methods have been developed in the recent past to solve ELD problems. In this paper, the most recently developed population-based optimization called the Salp Swarm Algorithm (SSA) has been utilized to solve the ELD problem. The results for the ELD problem have been verified by applying it to a standard 6-generator system with and without due consideration of transmission losses. The finally obtained results using the SSA are compared to that with the Particle Swarm Optimization (PSO) algorithm. It has been observed that the obtained results using the SSA are quite encouraging.
Źródło:
Archives of Electrical Engineering; 2021, 70, 2; 337-349
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fuzzy ranking based non-dominated sorting genetic algorithm-II for network overload alleviation
Autorzy:
Pandiarajan, K.
Babulal, C. K.
Powiązania:
https://bibliotekanauki.pl/articles/141059.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
non-dominated sorting genetic algorithm
generation rescheduling
particle swarm optimization (PSO)
differential evolution
overload index
Opis:
This paper presents an effective method of network overload management in power systems. The three competing objectives 1) generation cost 2) transmission line overload and 3) real power loss are optimized to provide pareto-optimal solutions. A fuzzy ranking based non-dominated sorting genetic algorithm-II (NSGA-II) is used to solve this complex nonlinear optimization problem. The minimization of competing objectives is done by generation rescheduling. Fuzzy ranking method is employed to extract the best compromise solution out of the available non-dominated solutions depending upon its highest rank. N-1 contingency analysis is carried out to identify the most severe lines and those lines are selected for outage. The effectiveness of the proposed approach is demonstrated for different contingency cases in IEEE 30 and IEEE 118 bus systems with smooth cost functions and their results are compared with other single objective evolutionary algorithms like Particle swarm optimization (PSO) and Differential evolution (DE). Simulation results show the effectiveness of the proposed approach to generate well distributed pareto-optimal non-dominated solutions of multi-objective problem
Źródło:
Archives of Electrical Engineering; 2014, 63, 3; 367-384
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An adaptive particle swarm optimization algorithm for robust trajectory tracking of a class of under actuated system
Autorzy:
Kumar, V. E.
Jerome, J.
Powiązania:
https://bibliotekanauki.pl/articles/141105.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
inverted pendulum
LQR controller
particle swarm optimization (PSO)
genetic algorithm
adaptive inertia weight factor
state feedback control
Opis:
This paper presents an adaptive particle swarm optimization (APSO) based LQR controller for optimal tuning of state feedback controller gains for a class of under actuated system (Inverted pendulum). Normally, the weights of LQR controller are chosen based on trial and error approach to obtain the optimum controller gains, but it is often cumbersome and tedious to tune the controller gains via trial and error method. To address this problem, an intelligent approach employing adaptive PSO (APSO) for optimum tuning of LQR is proposed. In this approach, an adaptive inertia weight factor (AIWF), which adjusts the inertia weight according to the success rate of the particles, is employed to not only speed up the search process but also to increase the accuracy of the algorithm towards obtaining the optimum controller gain. The performance of the proposed approach is tested on a bench mark inverted pendulum system, and the experimental results of APSO are compared with that of the conventional PSO and GA. Experimental results prove that the proposed algorithm remarkably improves the convergence speed and precision of PSO in obtaining the robust trajectory tracking of inverted pendulum.
Źródło:
Archives of Electrical Engineering; 2014, 63, 3; 345-365
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Photovoltaic power prediction based on improved grey wolf algorithm optimized back propagation
Autorzy:
He, Ping
Dong, Jie
Wu, Xiaopeng
Yun, Lei
Yang, Hua
Powiązania:
https://bibliotekanauki.pl/articles/27309934.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
BP neural network
photovoltaic power generation
PSO–GWO model
PSO–GWO–BP prediction model
particle swarm optimization
gray wolf optimization
back propagation
standard grey wolf algorithm
Opis:
At present, the back-propagation (BP) network algorithm widely used in the short-term output prediction of photovoltaic power stations has the disadvantage of ignoring meteorological factors and weather conditions in the input. The existing traditional BP prediction model lacks a variety of numerical optimization algorithms, such that the prediction error is large. The back-propagation (BP) neural network is easy to fall into local optimization thus reducing the prediction accuracy in photovoltaic power prediction. In order to solve this problem, an improved grey wolf optimization (GWO) algorithm is proposed to optimize the photovoltaic power prediction model of the BP neural network. So, an improved grey wolf optimization algorithm optimized BP neural network for a photovoltaic (PV) power prediction model is proposed. Dynamic weight strategy, tent mapping and particle swarm optimization (PSO) are introduced in the standard grey wolf optimization (GWO) to construct the PSO–GWO model. The relative error of the PSO–GWO–BP model predicted data is less than that of the BP model predicted data. The average relative error of PSO–GWO–BP and GWO–BP models is smaller, the average relative error of PSO–GWO–BP model is the smallest, and the prediction stability of the PSO–GWO–BP model is the best. The model stability and prediction accuracy of PSO–GWO–BP are better than those of GWO–BP and BP.
Źródło:
Archives of Electrical Engineering; 2023, 72, 3; 613--628
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies