Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "energia zintegrowana" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
A combined method for wind power generation forecasting
Autorzy:
Le, Tuan-Ho
Powiązania:
https://bibliotekanauki.pl/articles/1955200.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
autoregressive integrated moving average
exponential smoothing methods
forecasting
response surface methodology
wind power
autoregresyjna zintegrowana średnia ruchoma
metody wygładzania wykładniczego
prognozowanie
metodologia powierzchni odpowiedzi
energia wiatrowa
Opis:
Most of the existing statistical forecasting methods utilize the historical values of wind power to provide wind power generation prediction. However, several factors including wind speed, nacelle position, pitch angle, and ambient temperature can also be used to predict wind power generation. In this study, a wind farm including 6 turbines (capacity of 3.5 MW per turbine) with a height of 114 meters, 132-meter rotor diameter is considered. The time-series data is collected at 10-minute intervals from the SCADA system. One period from January 04th, 2021 to January 08th, 2021 measured from the wind turbine generator 06 is investigated. One period from January 01st, 2021 to January 31st, 2021 collected from the wind turbine generator 02 is investigated. Therefore, the primary objective of this paper is to propose a combined method for wind power generation forecasting. Firstly, response surface methodology is proposed as an alternative wind power forecasting method. This methodology can provide wind power prediction by considering the relationship between wind power and input factors. Secondly, the conventional statistical forecasting methods consisting of autoregressive integrated moving average and exponential smoothing methods are used to predict wind power time series. Thirdly, response surface methodology is combined with autoregressive integrated moving average or exponential smoothing methods in wind power forecasting. Finally, the two above periods are performed in order to demonstrate the efficiency of the combined methods in terms of mean absolute percent error and directional statistics in this study.
Źródło:
Archives of Electrical Engineering; 2021, 70, 4; 991-1009
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies