Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "path planning algorithm" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Global path planning for multiple AUVs using GWO
Autorzy:
Panda, Madhusmita
Das, Bikramaditya
Pati, Bibhuti
Powiązania:
https://bibliotekanauki.pl/articles/229749.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Autonomous Underwater Vehicle
AUV
Genetic Algorithm
GA
Global Path Planning
GPP
Grey Wolf Optimization
GWO
Sliding Mode Control
SMC
waypoints
Opis:
In global path planning (GPP), an autonomous underwater vehicle (AUV) tracks a predefined path. The main objective of GPP is to generate a collision free sub-optimal path with minimum path cost. The path is defined as a set of segments, passing through selected nodes known as waypoints. For smooth planar motion, the path cost is a function of the path length, the threat cost and the cost of diving. Path length is the total distance travelled from start to end point, threat cost is the penalty of collision with the obstacle and cost of diving is the energy expanse for diving deeper in ocean. This paper addresses the GPP problem for multiple AUVs in formation. Here, Grey Wolf Optimization (GWO) algorithm is used to find the suboptimal path for multiple AUVs in formation. The results obtained are compared to the results of applying Genetic Algorithm (GA) to the same problem. GA concept is simple to understand, easy to implement and supports multi-objective optimization. It is robust to local minima and have wide applications in various fields of science, engineering and commerce. Hence, GA is used for this comparative study. The performance analysis is based on computational time, length of the path generated and the total path cost. The resultant path obtained using GWO is found to be better than GA in terms of path cost and processing time. Thus, GWO is used as the GPP algorithm for three AUVs in formation. The formation follows leader-follower topography. A sliding mode controller (SMC) is developed to minimize the tracking error based on local information while maintaining formation, as mild communication exists. The stability of the sliding surface is verified by Lyapunov stability analysis. With proper path planning, the path cost can be minimized as AUVs can reach their target in less time with less energy expanses. Thus, lower path cost leads to less expensive underwater missions.
Źródło:
Archives of Control Sciences; 2020, 30, 1; 77-100
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies