Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multiple model" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Nonlinear multiple model particle filters algorithm for tracking multiple targets
Autorzy:
Sebbagh, A.
Tebbikh, H.
Powiązania:
https://bibliotekanauki.pl/articles/229441.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
estimation
particle filter
multiple targets tracking
multiple model approach
Opis:
The paper addresses multiple targets tracking problem encountered in number of situations in signal and image processing. In this paper, we present an efficient filtering algorithm to perform accurate estimation in jump Markov nonlinear systems, which we aim to contribute in solving the problem of multiple targets tracking using bearings-only measurements. The idea of this algorithm consists of the combination between the multiple model approach and particle filtering methods, which give a nonlinear multiple model particle filters algorithm. This algorithm is used to estimate the trajectories of multiple targets assumed to be nonlinear, from their noisy bearings.
Źródło:
Archives of Control Sciences; 2011, 21, 1; 37-60
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Real-time implementation of multiple model based predictive control strategy to air/fuel ratio of a gasoline engine
Autorzy:
Wojnar, S
Polóni, T
Šimončič, P
Rohal’-Ilkiv, B
Honek, M
Csambál, J
Powiązania:
https://bibliotekanauki.pl/articles/229632.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
model predictive control
multiple models
air/fuel ratio
spark ignition engine
ARX models
Opis:
Growing safety, pollution and comfort requirements influence automotive industry ever more. The use of three-way catalysts in exhaust aftertreatment systems of combustion engines is essential in reducing engine emissions to levels demanded by environmental legislation. However, the key to the optimal catalytic conversion level is to keep the engine air/fuel ratio (AFR) at a desired level. Thus, for this purposes more and more sophisticated AFR control algorithms are intensively investigated and tested in the literature. The goal of this paper is to present for a case of a gasoline engine the model predictive AFR controller based on the multiple-model approach to the engine modeling. The idea is to identify the engine in particular working points and then to create a global engine's model using Sugeno fuzzy logic. Opposite to traditional control approaches which lose their quality beside steady state, it enables to work with satisfactory quality mainly in transient regimes. Presented results of the multiple-model predictive air/fuel ratio control are acquired from the first experimental real-time implementation on the VW Polo 1390 cm3 gasoline engine, at which the original electronic control unit (ECU) has been fully replaced by a dSpace prototyping system which execute the predictive controller. Required control performance has been proven and is presented in the paper.
Źródło:
Archives of Control Sciences; 2013, 23, 1; 93-106
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies