Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Lyapunov exponents" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Hyperchaos, adaptive control and synchronization of a novel 4-D hyperchaotic system with two quadratic nonlinearities
Autorzy:
Vaidyanathan, S.
Powiązania:
https://bibliotekanauki.pl/articles/229724.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
chaos
hyperchaos
control
synchronization
Lyapunov exponents
Opis:
This research work announces an eleven-term novel 4-D hyperchaotic system with two quadratic nonlinearities. We describe the qualitative properties of the novel 4-D hyperchaotic system and illustrate their phase portraits. We show that the novel 4-D hyperchaotic system has two unstable equilibrium points. The novel 4-D hyperchaotic system has the Lyapunov exponents L1 = 3.1575, L2 = 0.3035, L3 = 0 and L4 = −33.4180. The Kaplan-Yorke dimension of this novel hyperchaotic system is found as DKY = 3.1026. Since the sum of the Lyapunov exponents of the novel hyperchaotic system is negative, we deduce that the novel hyperchaotic system is dissipative. Next, an adaptive controller is designed to stabilize the novel 4-D hyperchaotic system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global hyperchaos synchronization of the identical novel 4-D hyperchaotic systems with unknown system parameters. The adaptive control results are established using Lyapunov stability theory. MATLAB simulations are depicted to illustrate all the main results derived in this research work
Źródło:
Archives of Control Sciences; 2016, 26, 4; 471-495
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On a continuity of characteristic exponents of linear discrete time-varying systems
Autorzy:
Czornik, A.
Mokry, P.
Niezabitowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/229783.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
time-varying discrete linear systems
Lyapunov exponents
perturbation theory
characteristic exponents
Opis:
In this paper we present a sufficient condition for continuity of Lyapunov exponents of discrete time-varying linear system. Basing on this result we show that Lyapunov exponents of time-invariant systems depend continuously on the time-varying perturbations.
Źródło:
Archives of Control Sciences; 2012, 22, 1; 17-27
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new chaotic system with axe-shaped equilibrium, its circuit implementation and adaptive synchronization
Autorzy:
Vaidyanathan, S.
Sambas, A.
Mamat, M.
Powiązania:
https://bibliotekanauki.pl/articles/230023.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
chaos
chaotic systems
curve equilibrium
Lyapunov exponents
circuit design
synchronization
Opis:
In the recent years, chaotic systems with uncountable equilibrium points such as chaotic systems with line equilibrium and curve equilibrium have been studied well in the literature. This reports a new 3-D chaotic system with an axe-shaped curve of equilibrium points. Dynamics of the chaotic system with the axe-shaped equilibrium has been studied by using phase plots, bifurcation diagram, Lyapunov exponents and Lyapunov dimension. Furthermore, an electronic circuit implementation of the new chaotic system with axe-shaped equilibrium has been designed to check its feasibility. As a control application, we report results for the synchronization of the new system possessing an axe-shaped curve of equilibrium points.
Źródło:
Archives of Control Sciences; 2018, 28, 3; 443-462
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Synchronization of fractional order Rabinovich-Fabrikant systems using sliding mode control techniques
Autorzy:
Kumar, Sanjay
Singh, Chaman
Prasad, Sada Nand
Shekhar, Chandra
Aggarwal, Rajiv
Powiązania:
https://bibliotekanauki.pl/articles/229902.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fractional-order chaotic system
chaos synchronization
Rabinovich-Fabrikant system
Lyapunov exponents
Opis:
In this research article, we present the concepts of fractional-order dynamical systems and synchronization methodologies of fractional order chaotic dynamical systems using slide mode control techniques. We have analysed the different phase portraits and time-series graphs of fractional order Rabinovich-Fabrikant systems. We have obtained that the lowest dimension of Rabinovich-Fabrikant system is 2.85 through utilization of the fractional calculus and computational simulation. Bifurcation diagrams and Lyapunov exponents of fractional order Rabinovich-Fabrikant system to justify the chaos in the systems. Synchronization of two identical fractional-order chaotic Rabinovich-Fabrikant systems are achieved using sliding mode control methodology.
Źródło:
Archives of Control Sciences; 2019, 29, 2; 307-322
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new modified WINDMI jerk system with exponential and sinusoidal nonlinearities, its bifurcation analysis, multistability, circuit simulation and synchronization design
Autorzy:
Mohamed, Mohamad Afendee
Vaidyanathan, Sundarapandian
Hannachi, Fareh
Sambas, Aceng
Darwin, P.
Powiązania:
https://bibliotekanauki.pl/articles/27324008.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
chaos
jerk systems
chaotic systems
Lyapunov exponents
bifurcation
multistability
circuit simulation
backstepping control
Opis:
In this work, a new 3-D modified WINDMI chaotic jerk system with exponential and sinusoidal nonlinearities is presented and its dynamical behaviours and properties are investigated. Firstly, some properties of the system are studied such as equilibrium points and their stability, Lyapunov exponents and Kaplan-Yorke dimension. Also, we study the new jerk system dynamics using numerical simulations and analyses, including phase portraits, Lyapunouv exponent spectrum, bifurcation diagram and Poincaré map, 0-1 test. Next, we exhibit that the new 3-D chaotic modified WINDMI jerk system has multistability with coexisting chaotic attractors. Moreover, we design an electronic circuit using MultiSim 14.1 for real implementation of the modified WINDMI chaotic jerk system. Finally, we design an active synchronization scheme for the complete synchronization of the modified WINDMI chaotic jerk systems via backstepping control.
Źródło:
Archives of Control Sciences; 2023, 33, 4; 711--735
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies