Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Krzemiński, Michał" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Proactive scheduling of repetitive construction processes to reduce crews idle times and delays
Metoda proaktywnego harmonogramowania przedsięwzięc powtarzalnych zapewniająca redukcję przestojów w pracy brygad i opóźnienia w realizacji
Autorzy:
Jaśkowski, Piotr
Biruk, Sławomir
Krzemiński, Michał
Powiązania:
https://bibliotekanauki.pl/articles/2036409.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Opis:
Duration of construction projects can be reduced by harmonizing construction processes: adjusting productivity rates of specialized crews and enabling the crews to work in parallel as in a production line. This is achievable in the case of projects whose scope can be divided into units where a similar type of work needs to be conducted in the same sequence. A number of repetitive project scheduling methods have been developed to assist the planner in minimizing the execution time and smoothing resource profiles. However, the workflow, especially in construction, is subject to disturbance, and the actual process durations are likely to vary from the as-scheduled ones. The inherent variability of process durations results not only in delays of a particular process in a particular unit but also in the propagation of disruptions throughout the initially well-harmonized schedule. To counteract the negative effects of process duration variability, a number of proactive scheduling methods have been developed. They consist in some form of predicting the conditions to occur in the course of the project and implementing a strategy to mitigate disturbance propagation. This paper puts forward a method of scheduling repetitive heterogeneous processes. The method aims to reduce idle time of crews. It is based on allocating time buffers in the form of breaks between processes conducted within units. The merits of the method are illustrated by an example and assessed in the course of a simulation experiment.
W celu redukcji czasu realizacji obiektów budowlanych, poprzez umożliwienie równoległej pracy brygad roboczych, jest konieczny ich podział na mniejsze części (działki robocze) o wielkości zbliżonej do wielkości frontu pracy brygad. Brygady realizują na kolejnych działkach podobne zadania, dostosowane do kwalifikacji zawodowych posiadanych przez jej członków. Do harmonogramowania realizacji przedsięwzięć powtarzalnych opracowano wiele metod, głównie dla warunków deterministycznych, gwarantujących z jednej strony minimalizację czasu ich realizacji a z drugiej zapewnienie ciągłości pracy brygad. Przestoje w pracy brygad są niekorzystne ze względu na niewykorzystanie potencjału produkcyjnego i straty finansowe spowodowane koniecznością wypłaty wynagrodzenia za gotowość do pracy lub przerzuty na inne place budowy, czy też skierowanie do realizacji innych mniej płatnych robót. Tego typu przestoje można wyeliminować w przypadku, gdy możliwe jest zachowanie stałego rytmu pracy, czyli gdy wielkość działek jest jednakowa (działki jednotypowe), bądź występuje zależność proporcjonalna między ich wielkością a pracochłonnością robót każdego rodzaju (działki jednorodne). Eliminacja przestojów prowadzi wówczas do minimalizacji czasu realizacji całego przedsięwzięcia. W przypadku działek niejednorodnych (o różnej wielkości i pracochłonności robót) zapewnienie ciągłości pracy brygad paradoksalnie powoduje wydłużenie czasu realizacji przedsięwzięcia (ze względu na późniejsze rozpoczynanie pracy kolejnych brygad). Na skutek zakłóceń realizacyjnych i oddziaływania czynników ryzyka czasy wykonania procesów na działkach roboczych są zmienne – mogą różnić się od planowanych, przyjmowanych przy tworzeniu harmonogramu. Zmienność czasów wykonania prowadzi do opóźnień w przekazywaniu frontów robót kolejnym brygadom i w efekcie do zakłóceń w ciągłej realizacji ciągów procesów i niedotrzymywania terminów dyrektywnych. Najczęściej stosowanym sposobem zapewnienia ochrony terminów dyrektywnych jest alokacja buforów czasu w harmonogramie. W artykule zaproponowano podejście do alokacji buforów umożliwiające zarówno zwiększenie niezawodności dotrzymania terminu dyrektywnego zakonczenia przedsięwzięcia, jak i redukcję przestojów w pracy brygad.
Źródło:
Archives of Civil Engineering; 2021, 67, 4; 287-302
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Proactive-reactive repetitive project scheduling method - the concept of risk consideration at the project planning and execution stage
Proaktywo-reaktywna metoda harmonogramowania przedsięwzięć powtarzalnych - koncepcja uwzględnienia ryzyka na etapie planowania i realizacji
Autorzy:
Jaśkowski, Piotr
Biruk, Sławomir
Krzemiński, Michał
Powiązania:
https://bibliotekanauki.pl/articles/27322551.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Opis:
The construction contractor is concerned with reducing the cost of the project, including reducing unnecessary downtime. This is achieved when resources are fully utilized; this means the crews work continuously moving without interruption from one location to the other. However, any disturbance in the optimally scheduled workflow caused by random events is likely to result in delays, interruptions in the crews work, and productivity losses. There is therefore a need for scheduling methods that allow plans to be more resilient to disruptions and ensure a reduction in downtime and implementation costs. The authors put forward a proactive-reactive approach to the schedule risk management. Proposed method makes it possible to protect schedule deadlines from the impact of risk factors by allocating time buffers (proactive approach). It also takes into account the measures that managers take during execution in response to delays that occur, such as changing construction methods, employing extra resources, or working overtime (reactive approach). It combines both ideas and is based on project simulation technique. The merits of the proposed approach are illustrated by a case of a repetitive project to erect a number of buildings. The presented example proves that the proposed method enables the planner to estimate the scale of delays of processes’ start and consider the impact of measures to reduce duration of processes in particular locations taken in reaction to delays. Thus, it is possible to determine the optimal schedule, at which the costs of losses associated with delays and downtime are minimal.
Najlepsze rezultaty realizacji przedsięwzięć budowlanych są osiągane wówczas, gdy brygady pracują bez przerw i po zakończeniu procesu na jednej części obiektu (działce roboczej) mogą rozpocząć pracę na działce kolejnej, na której zakończono wykonanie procesów poprzedzających. Dzięki ciągłości pracy brygad i powtarzalności realizacji tych samych zadań na poszczególnych działkach roboczych może wystąpić efekt uczenia się i redukcji czasu wykonania zadań. Zakłócenia w realizacji robót, na skutek oddziaływania czynników ryzyka o charakterze losowym, mogą prowadzić do opóźnień w wykonaniu procesów poprzedzających i w efekcie do przestojów w pracy brygad oraz wydłużenia czasu realizacji całego przedsięwzięcia. W związku z tym istotne jest rozwijanie metod harmonogramowania uwzględniających dynamikę rzeczywistego przebiegu wykonania procesów w zmiennych warunkach realizacyjnych. Redukcja odchyleń terminów zaplanowanych od rzeczywistych umożliwia zmniejszenie kosztów związanych z ich przekroczeniem, m.in. zamrożenia środków obrotowych w zapasach, przestojów w pracy brygad roboczych, kar umownych za niedotrzymanie terminów kontraktowych itp. Zdeterminowane terminy realizacji procesów w harmonogramie pozwalają na tworzenie planów produkcji pomocniczej, optymalizację zaopatrzenia budowy w materiały i sprzęt, pozyskiwanie zasobów ludzkich i zawieranie kontraktów z podwykonawcami. Ryzyko wystąpienia opóźnień może być uwzględnione już na etapie harmonogramowania poprzez określenie wielkości buforów czasu i ich alokację w harmonogramie. Takie podejście jest określane mianem harmonogramowania proaktywnego. Nawet mimo uodpornienia harmonogramu przy zastosowaniu metod proaktywnych, w trakcie realizacji mogą pojawić się nieprzewidziane zdarzenia, które powodują, że ochrona taka jest niewystarczająca i rozpoczęcie kolejnych zadań w zaplanowanych terminach jest niemożliwe ze względu na opóźnienia procesów poprzedzających lub niezwolnienie niezbędnych zasobów. Zachodzi wówczas konieczność reakcji - podjęcia działań redukujących odchylenia od planu lub aktualizacji planu. W reakcji na zakłócenia są podejmowane działania zmierzające do skrócenia czasu procesów jeszcze niewykonanych (zmiana wariantu technologicznego wykonania procesu, zatrudnienie dodatkowych zasobów, praca w nadgodzinach lub wydłużony tydzień pracy). W artykule zaproponowano podejście do uwzględnienia ryzyka o charakterze proaktywno-reaktywnym, wykorzystujące metodę symulacji cyfrowej w celu oszacowania wielkości opóźnień terminów rozpoczynania kolejnych procesów z uwzględnieniem reaktywnych działań redukujących czas ich wykonania na działkach roboczych, podejmowanych już w fazie realizacji. W proponowanej metodzie proaktywno-reaktywnego harmonogramowania przedsięwzięć powtarzalnych zakłada się, że czasy realizacji procesów są zmiennymi losowymi o znanej funkcji gęstości i parametrach rozkładu.
Źródło:
Archives of Civil Engineering; 2023, 69, 4; 89--104
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling the problem of sequencing projects in the contractor’s portfolio of orders
Modelowanie problemu kolejności realizacji zleceń przedsiębiorstwa budowlanego
Autorzy:
Jaśkowski, Piotr
Biruk, Sławomir
Krzemiński, Michał
Powiązania:
https://bibliotekanauki.pl/articles/2174002.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
planowanie przedsięwzięcia
proces powtarzalny
redukcja
czas przestoju
brygada robocza
modelowanie matematyczne
optymalizacja harmonogramu
project scheduling
repetitive process
idle time
time reduction
mathematical modelling
schedule optimization
Opis:
It is a usual practice for a contractor to deliver several projects at a time. Typically, the projects involve similar types of works and share the same pool of resources (i.e. construction crews). For this reason, the company’s portfolio of orders considered for a particular planning horizon can be modeled as a project with repeatable processes to be performed in heterogeneous units located in a number of construction sites. Its scheduling requires determining the best sequence of the resources’ moving from unit to unit while minding the due dates related with particular orders as well as resource continuity constraints. The authors present a model of this scheduling problem in the form of a mixed-integer linear program. The aim is to schedule a portfolio of projects in a way that minimizes the total of the resource idle time-related costs, the indirect costs, and the delay penalties. The model can be solved by means of a general-purpose solver. The model is applied to schedule a portfolio of multifamily housing projects.
W artykule opracowano model matematyczny umożliwiający przydział brygad roboczych do realizacji poszczególnych procesów, spośród będących w dyspozycji przedsiębiorstwa w przyjętym horyzoncie planowania, a także na ustalenie harmonogramu ich pracy - terminów realizacji przydzielonych im procesów na wznoszonych obiektach. Model ma na celu zapewnienie redukcji łącznych kosztów pośrednich i przestojów w pracy brygad oraz kar umownych. Straty spowodowane przestojami w pracy każdej brygady są obliczane jako iloczyn czasu przestoju po wykonaniu procesu na działce roboczej oraz jednostkowych (dziennych) kosztów przestoju. Wysokość kar umownych jest obliczana jako iloczyn różnicy między czasem realizacji przedsięwzięcia a czasem dyrektywnym oraz jednostkowej kary. W przypadku ukończenia realizacji w czasie krótszym od dyrektywnego wykonawca nie zostanie obciążony karami finansowymi, przyjęto również, że nie uzyska za to bonusu. Zaproponowany sposób doboru zmiennych decyzyjnych oraz zapisu analitycznego ograniczeń problemu o charakterze permutacyjnym pozwolił na sformułowanie modelu w postaci modelu mieszanego całkowitoliczbowego, do którego rozwiązania można stosować dostępne na rynku solvery. Oczywiście dotyczy to modeli problemów o niewielkiej złożoności obliczeniowej, lecz stwarza możliwość opracowania bazy przykładów testowych i weryfikacji jakości tworzonych w przyszłości algorytmów dedykowanych. Zaproponowane podejście do modelowania i rozwiązania problemu szeregowania zleceń przedsiębiorstwa przedstawiono na przykładzie realizacji stanu surowego zamkniętego sześciu budynków wielorodzinnych wznoszonych w technologii monolitycznej (fundamenty, ściany i stropy żelbetowe monolityczne; stropodach z żelbetowych płyt prefabrykowanych z warstwami izolacyjnymi; ściany ocieplone z wykorzystaniem ETICS (External Thermal Inusulation Composite System). Realizacja każdego obiektu wymaga wykonania następujących procesów powierzanych do wykonania odrębnym brygadom branżowym: roboty ziemne i fundamentowe (stan zero), konstrukcja monolityczna żelbetowa (stan surowy), dach, elewacja. Realizacja tych obiektów stanowi portfel zleceń analizowanego przykładowego przedsiębiorstwa w okresie jednego roku.
Źródło:
Archives of Civil Engineering; 2022, 68, 3; 307--322
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies