Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gaussian mixture model" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Speech emotion recognition under white noise
Autorzy:
Huang, C.
Chen, G.
Yu, H.
Bao, Y.
Zhao, L.
Powiązania:
https://bibliotekanauki.pl/articles/177301.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
speech emotion recognition
speech enhancement
emotion model
Gaussian mixture model
Opis:
Speaker‘s emotional states are recognized from speech signal with Additive white Gaussian noise (AWGN). The influence of white noise on a typical emotion recogniztion system is studied. The emotion classifier is implemented with Gaussian mixture model (GMM). A Chinese speech emotion database is used for training and testing, which includes nine emotion classes (e.g. happiness, sadness, anger, surprise, fear, anxiety, hesitation, confidence and neutral state). Two speech enhancement algorithms are introduced for improved emotion classification. In the experiments, the Gaussian mixture model is trained on the clean speech data, while tested under AWGN with various signal to noise ratios (SNRs). The emotion class model and the dimension space model are both adopted for the evaluation of the emotion recognition system. Regarding the emotion class model, the nine emotion classes are classified. Considering the dimension space model, the arousal dimension and the valence dimension are classified into positive regions or negative regions. The experimental results show that the speech enhancement algorithms constantly improve the performance of our emotion recognition system under various SNRs, and the positive emotions are more likely to be miss-classified as negative emotions under white noise environment.
Źródło:
Archives of Acoustics; 2013, 38, 4; 457-463
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speaker Model Clustering to Construct Background Models for Speaker Verification
Autorzy:
Dişken, G.
Tüfekci, Z.
Çevik, U.
Powiązania:
https://bibliotekanauki.pl/articles/177299.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Gaussian mixture models
k-means
imposter models
speaker clustering
speaker verification
Opis:
Conventional speaker recognition systems use the Universal Background Model (UBM) as an imposter for all speakers. In this paper, speaker models are clustered to obtain better imposter model representations for speaker verification purpose. First, a UBM is trained, and speaker models are adapted from the UBM. Then, the k-means algorithm with the Euclidean distance measure is applied to the speaker models. The speakers are divided into two, three, four, and five clusters. The resulting cluster centers are used as background models of their respective speakers. Experiments showed that the proposed method consistently produced lower Equal Error Rates (EER) than the conventional UBM approach for 3, 10, and 30 seconds long test utterances, and also for channel mismatch conditions. The proposed method is also compared with the i-vector approach. The three-cluster model achieved the best performance with a 12.4% relative EER reduction in average, compared to the i-vector method. Statistical significance of the results are also given.
Źródło:
Archives of Acoustics; 2017, 42, 1; 127-135
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies