Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "least squares" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Consistency of trigonometric and polynomial regression estimators
Autorzy:
Popiński, Waldemar
Powiązania:
https://bibliotekanauki.pl/articles/1339065.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
consistent estimator
orthonormal system
least squares method
regression
Opis:
The problem of nonparametric regression function estimation is considered using the complete orthonormal system of trigonometric functions or Legendre polynomials $e_k$, k=0,1,..., for the observation model $y_i = f(x_i) + η_i $, i=1,...,n, where the $η_i$ are independent random variables with zero mean value and finite variance, and the observation points $x_i\in[a,b]$, i=1,...,n, form a random sample from a distribution with density $ϱ\in L^1[a,b]$. Sufficient and necessary conditions are obtained for consistency in the sense of the errors $\Vert f-\widehat f_N\Vert, \vert f(x)-\widehatf_N(x)\vert$, $x\in[a,b]$, and $E\Vert f-\widehatf_N\Vert^2$ of the projection estimator $\widehat f_N(x) = \sum_{k=0}^N\widehat{c}_ke_k(x)$ for $\widehat{c}_0,\widehat{c}_1,\ldots,\widehat{c}_N$ determined by the least squares method and $f\in L^2[a,b]$.
Źródło:
Applicationes Mathematicae; 1998-1999, 25, 1; 73-83
1233-7234
Pojawia się w:
Applicationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On least squares estimation of Fourier coefficients and of the regression function
Autorzy:
Popiński, Waldemar
Powiązania:
https://bibliotekanauki.pl/articles/1340683.pdf
Data publikacji:
1993
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Fourier series
consistent estimator
least squares method
regression
Opis:
The problem of nonparametric function fitting with the observation model $y_i = f(x_i) + η_i$, i=1,...,n, is considered, where $η_i$ are independent random variables with zero mean value and finite variance, and $x_i \in [a,b] \subset \R^1$, i=1,...,n, form a random sample from a distribution with density $ϱ \in L^1[a,b]$ and are independent of the errors $η_i$, i=1,...,n. The asymptotic properties of the estimator $\widehat{f}_{N(n)}(x) = \sum_{k=1}^{N(n)} \widehat{c}_ke_k(x)$ for $f \in L^2[a,b]$ and $\widehat{c}^{N(n)}=( \widehat{c}_1,..., \widehat{c}_{N(n)})^T$ obtained by the least squares method as well as the limits in probability of the estimators $\widehat{c}_k$, k=1,...,N, for fixed N, are studied in the case when the functions $e_k$, k=1,2,..., forming a complete orthonormal system in $L^2\[a,b\]$ are analytic.
Źródło:
Applicationes Mathematicae; 1993-1995, 22, 1; 91-102
1233-7234
Pojawia się w:
Applicationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Convergence rates of orthogonal series regression estimators
Autorzy:
Popiński, Waldemar
Powiązania:
https://bibliotekanauki.pl/articles/1208155.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
orthonormal system
nonparametric series regression
least squares method
convergence rate
Opis:
General conditions for convergence rates of nonparametric orthogonal series estimators of the regression function f(x)=E(Y | X = x) are considered. The estimators are obtained by the least squares method on the basis of a random observation sample (Y_i,X_i), i=1,...,n, where $X_i ∈ A ⊂ ℝ^d$ have marginal distribution with density $ϱ ∈ L^1(A)$ and Var( Y | X = x) is bounded on A. Convergence rates of the errors $E_X(f(X)-\widehat f_N(X))^2$ and $\Vert f-\widehat f_N\Vert_∞$ for the estimator $\widehat f_N(x) = \sum_{k=1}^N\widehat c_ke_k(x)$, constructed using an orthonormal system $e_k$, k=1,2,..., in $L^2(A)$ are obtained.
Źródło:
Applicationes Mathematicae; 2000, 27, 4; 445-454
1233-7234
Pojawia się w:
Applicationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Least-squares trigonometric regression estimation
Autorzy:
Popiński, Waldemar
Powiązania:
https://bibliotekanauki.pl/articles/1338814.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
consistent estimator
least squares method
Fourier coefficients
trigonometric polynomial
regression function
Opis:
The problem of nonparametric function fitting using the complete orthogonal system of trigonometric functions $e_k$, k=0,1,2,..., for the observation model $y_i = f(x_{in}) + η_i$, i=1,...,n, is considered, where $η_i$ are uncorrelated random variables with zero mean value and finite variance, and the observation points $x_{in} ∈ [0,2π]$, i=1,...,n, are equidistant. Conditions for convergence of the mean-square prediction error $(1/n)\sum_{i=1}^n E(f(x_{in})-\widehat f_{N(n)}(x_{in}))^2$, the integrated mean-square error $E ‖f-\widehat f_{N(n)}‖^2$ and the pointwise mean-square error $E(f(x)-\widehatf_{N(n)}(x))^2$ of the estimator $\widehat f_{N(n)}(x) = \sum_{k=0}^{N(n)} \widehat c_k e_k(x)$ for f ∈ C[0,2π] and $\widehat c_0,\widehat c_1,...,\widehat c_{N(n)}$ obtained by the least squares method are studied.
Źródło:
Applicationes Mathematicae; 1999, 26, 2; 121-131
1233-7234
Pojawia się w:
Applicationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies