- Tytuł:
- Diagnostika rieżuszczego instrumienta s ispolzowanijem ałgoritma Treebagger wo wriemia swierlenija driewiesnost
- Autorzy:
-
Jegorowa, Albina
Górski, Jarosław
Kurek, Jarosław
Iurev, Maksim - Powiązania:
- https://bibliotekanauki.pl/articles/2200176.pdf
- Data publikacji:
- 2020
- Wydawca:
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
- Tematy:
-
diagnostics
tool wear
non-invasive method
chipboard
drill - Opis:
-
Диагностика режущего инструмента с использованием алгоритма Treebagger во время сверления древесностружечной плиты. Целью работы была оценка возможности использования алгоритма Treebagger так называемого ансамбля деревьев, для оценки состояния износа режущей кромки инструмента используемого в деревообработке в режиме реального времени и без участия человека. Оценка точности классификации при использовании данного алгоритма. В результате использования данного метода удалось получить точность классификации на уровне 80 %. Что важно, использованный классификатор Treebagger не путает между собой крайние классы, „зеленый” и „красный”. Это позволяет сделать вывод, что при соответствующем усовершенствовании алгоритма можно получить более высокую точность классификации и возможно использовать его для создания системы неинвазивной оценки состояния режущего инструмента.
Diagnostyka narzędzi skrawających z wykorzystaniem algorytmu Treebagger podczas wiercenia w płycie wiórowej. Celem pracy była ocena możliwości wykorzystania algorytmu Treebagger, tzw. zespołu drzew decyzyjnych, do oceny stanu zużycia ostrzy narzędzi wykorzystywanych w obróbce drewna oraz materiałów drewnopochodnych w czasie rzeczywistym i bez udziału operatora, a także ocena dokładności klasyfikacji przy zastosowaniu danego algorytmu. W wyniku zastosowania tej metody udało się uzyskać dokładność klasyfikacji na poziomie 80%. Co ważne, zastosowany klasyfikator Treebagger nie myli skrajnych klas: „zielonej” i „czerwonej”. Pozwala to stwierdzić, że wraz z odpowiednim ulepszeniem algorytmu można uzyskać wyższą dokładność klasyfikacji, jak i na jego podstawie stworzyć system do nieinwazyjnej oceny stanu narzędzi skrawających. - Źródło:
-
Annals of Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology; 2020, 110; 126--130
1898-5912 - Pojawia się w:
- Annals of Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology
- Dostawca treści:
- Biblioteka Nauki