Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "complete representations" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A new division formula for complete intersections
Autorzy:
Passare, Mikael
Powiązania:
https://bibliotekanauki.pl/articles/1312650.pdf
Data publikacji:
1991
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
complete intersections
residue currents
integral representations
Opis:
We provide a new division formula for holomorphic mappings. It is given in terms of residue currents and has the advantage of being more explicit and simpler to prove than the previously known formulas.
Źródło:
Annales Polonici Mathematici; 1991, 55, 1; 283-286
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Around Widders characterization of the Laplace transform of an element of $L^{∞}(ℝ^{+})$
Autorzy:
Kisyński, Jan
Powiązania:
https://bibliotekanauki.pl/articles/1207972.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
operators from $L_{ϰ}^{1}(ℝ^{+})$ into a Banach space
complete monotonicity and positivity with respect to a cone
one-parameter semigroups of operators
vector measures
Gelfand space
Radon-Nikodym property
representations of the convolution algebra $L_{ϰ}^{1}(ℝ^{+})$
pseudoresolvents and their generators
real inversion formulas for the Laplace transform
Opis:
Let ϰ be a positive, continuous, submultiplicative function on $ℝ^{+}$ such that $lim_{t→∞} e^{-ωt}t^{-α}ϰ(t) = a$ for some ω ∈ ℝ, α ∈ $\overline{ℝ^{+}}$ and $a ∈ ℝ^{+}$. For every λ ∈ (ω,∞) let $ϕ_{λ}(t) =e^{-λt}$ for $t ∈ ℝ^{+}$. Let $L^{1}_{ϰ}(ℝ^{+})$ be the space of functions Lebesgue integrable on $ℝ^{+}$ with weight $ϰ$, and let E be a Banach space. Consider the map $ϕ_{•}: (ω,∞) ∋ λ → ϕ_{λ} ∈ L_{ϰ}^{1}(ℝ^{+})$. Theorem 5.1 of the present paper characterizes the range of the linear map $T → Tϕ_{•}$ defined on $L(L_{ϰ}^{1}(ℝ^{+});E)$, generalizing a result established by B. Hennig and F. Neubrander for $ϰ(t)=e^{ωt}$. If ϰ ≡ 1 and E =ℝ then Theorem 5.1 reduces to D. V. Widder's characterization of the Laplace transform of a function in $L^{∞}(ℝ^{+})$. Some applications of Theorem 5.1 to the theory of one-parameter semigroups of operators are discussed. In particular a version of the Hille-Yosida generation theorem is deduced for $C_0$ semigroups $(S_t)_{t ∈ \overline{ℝ^{+}}}$ such that $sup_{t ∈ \overline{ℝ^{+}}} (ϰ(t))^{-1}∥ S_t∥ < ∞$.
Źródło:
Annales Polonici Mathematici; 2000, 74, 1; 161-200
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies