- Tytuł:
-
Application of artificial neural networks in modelling the contact area of grain seeds
Wykorzystanie sztucznych sieci neuronowych w modelowaniu powierzchni kontaktu ziarna zbóż - Autorzy:
-
Frączek, J.
Francik, S.
Ślipek, Z.
Knapczyk, A. - Powiązania:
- https://bibliotekanauki.pl/articles/93661.pdf
- Data publikacji:
- 2016
- Wydawca:
- Polskie Towarzystwo Inżynierii Rolniczej
- Tematy:
-
contact area
seed material
artificial neural network
powierzchnia kontaktu
materiał ziarnisty
sztuczna sieć neuronowa - Opis:
-
The objective of the research was to create a model which defines the relation between a fundamental contact area of a seed and the pressure force, water content in a seed and its geometrical dimensions with application of artificial neural networks (SSN). Computer program Statistica Neural Networks v. 6.0. was used for formation of a neural model. Tests were carried out on Roma wheat seed and Dańkowskie Złote rye with six various water contents: 0.11 0.15 0.19 0.23 0.28 0.33 (kg⋅kg-1 dry mass). Caryopses were loaded with eight values of compression force - from 41 N to 230 N. Multiplicity of iterations was 5. Seed material was moistened to obtain a specific water content. Each seed was loaded with compression force with respectively growing values: 41N, 68N, 95N, 122N, 149N, 176N, 203N and 230N. A four-layer network of Perceptron type with 10 neurons in the first and 8 neurons in the second hidden layer was selected as a model which the best defines the contact area of grain seeds loaded with axial force at various moisture levels. This network has 4 inputs (water content, pressure force, thickness and length of caryopses) and one output (elementary contact area of rye and wheat seeds). Comparison of the neural model with empirical formulas obtained from nonlinear estimation proved a considerable higher precision of the first one.
Celem badań było utworzenie modelu określającego zależności między elementarną powierzchnią kontaktu ziarna, a siłą nacisku, zawartością wody w ziarnie oraz jego wymiarami geometrycznymi, przy wykorzystaniu sztucznych sieci neuronowych (SSN). Do tworzenie modelu neuronowego wykorzystano program komputerowy Statistica Sieci Neuronowe v. 6.0. Badania przeprowadzono na ziarnie pszenicy Roma oraz żyta Dańkowskie Złote, przy sześciu różnych zawartościach wody: 0,11 0,15 0,19 0,23 0,28 0,33 (kg⋅kg-1 s.m.). Ziarniaki obciążano ośmioma wartościami siły ściskającej – od 41N do 230N. Krotność powtórzeń wynosiła 5. Materiał ziarnisty nawilżano aby uzyskać określoną zawartość wody. Każde ziarno obciążano siłą ściskającą o kolejno rosnących wartościach: 41N, 68N, 95N, 122N, 149N, 176N, 203N i 230N. Jako model najlepiej określający powierzchnię styku ziarna zbóż obciążanego siłą osiową, przy różnej wilgotności wybrano czterowarstwową sieć typu Perceptron o 10 neuronach w pierwszej i 8 neuronach w drugiej warstwie ukrytej. Sieć ta posiada 4 wejścia (zawartość wody, siła nacisku, grubość i długość ziarniaka), i jedno wyjście (elementarna powierzchnia kontaktu ziarna żyta i pszenicy). Porównanie modelu neuronowego z formułami empirycznymi uzyskanymi z estymacji nieliniowej wykazało zdecydowanie większą dokładność pierwszego z nich. - Źródło:
-
Agricultural Engineering; 2016, 20, 4; 27-37
2083-1587 - Pojawia się w:
- Agricultural Engineering
- Dostawca treści:
- Biblioteka Nauki