Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "manufacturing systems" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Solving the Spatial Relationships in Manufacturing Systems
Autorzy:
Daneshjo, Naqib
Mareš, Albert
Dudáš-Pajerká, Erika
Powiązania:
https://bibliotekanauki.pl/articles/102404.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
manufacturing systems
highly flexible
NC machine
industry
systemy produkcyjne
wysoka elastyczność
maszyna NC
przemysł
Opis:
Markets are already dynamic, and will continue to be so in the future. The pressure of customers / users for substantial product and service customization increases. Therefore, their demands must be met in a highly flexible, responsive and adaptable manner. The structural changes in company manufacturing systems need to be quickly adapted to the changing requirements and responded to in real-time. Production must not only be highly flexible with high-quality services, but it must be ready for work in integrated network structures. A logical response to these demands is the further development of industrial production ready for the changes presented in the forecasts of the fourth industrial revolution. In essence, it is a project of digitalization and sophistication of the industry. The new designs of highly integrated manufacturing systems and their clusters will ensure communication between the people and the means of production, as well as the production systems and other physical objects.
Źródło:
Advances in Science and Technology. Research Journal; 2020, 14, 2; 120-130
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent Visual Quality Control System Based on Convolutional Neural Networks for Holonic Shop Floor Control of Industry 4.0 Manufacturing Systems
Autorzy:
Oborski, Przemysław
Wysocki, Przemysław
Powiązania:
https://bibliotekanauki.pl/articles/2181746.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
quality control
manufacturing systems
Industry 4.0
artificial intelligence
convolutional neural networks
deep learning
process monitoring
holonic shop floor control
integrated IT systems
Opis:
The article presents research on industrial quality control system based on AI deep learning method. They are a part of larger project focusing on development of Holonic Shop Floor Control System for integration of machines, machine operators and manufacturing process monitoring with information flow in whole production process according to Industry 4.0 requirements. A system connecting together machine operators, machine control, process and machine monitoring with companywide IT systems is developed. It is an answer on manufacture of airplane industry requirements. The main aim of the system is full automation of information flow between a management level and manufacturing process level. Intelligent, flexible quality control system allowing for active manufacturing optimization on the base of achieved results as well as a historical data collection for further Big Data analysis is the main aim of the current research. During research number of selected AI algorithms were tested for assessing their suitability for performing tasks identified in real manufacturing environment. As a result of the conducted analyzes, Convolutional Neural Networks were selected for further study. Number of built Convolutional Neural Networks algorithms were tested using sets of data and photos from the production line. A further step of research will be focused on testing a system in real manufacturing process for able possible construct a fully functional quality control system based on the use of Convolutional Neural Networks.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 2; 89--98
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies