Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "friction polymer" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
A Comparative Study of Tribological Behavior of Moglice and DK-6(PT) Composites
Autorzy:
Pashechko, Mykhailo
Ishchenko, Аnatoliy
Radionenko, Aleksandr
Kindrachuk, Myroslav
Tisov, Oleksandr
Powiązania:
https://bibliotekanauki.pl/articles/2022309.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
polymer matrix composites
friction coefficient
wear
tribometer
hardness
Opis:
Authors have produced new polymer-based composite material DK-6(PT) for substitution of Moglice (Diamant) polymer. We manufactured and used sliding-friction test apparatus (pin-on-disc) capable of testing three specimens simultaneously, much reducing time for the test. The monitoring of the material curing process and the Shore hardness test indicate minor difference from reference material. Measurements were carried out during the curing period, since it is important to know change in this parameter over time. The wear test proved that DK-6(PT) composite in the long-time test has good wear resistance: over 80 km of the friction path, the wear loss of both materials is approximately the same. Furthermore, the friction factor of DK-6(PT) is 5–10% less than that of Moglice. Thus, the studied new polymeric composite may compete with well-known material Moglice and significantly cut the expenses for reconditioning of worn slide ways of metal working equipment.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 1; 149-157
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of Wear Resistance of Functional Composite Polymeric Materials and Durability of Metal-Polymer Bearings
Autorzy:
Chernets, Myron
Świć, Antoni
Kornienko, Anatolii
Yurchuk, Alina
Powiązania:
https://bibliotekanauki.pl/articles/2201913.pdf
Data publikacji:
2023
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
polyamides
wear resistance
composites
dry sliding friction
metal-polymer plain bearings
durability
Opis:
A method of tribological testing of models with such sliding friction using a simple pin-on-disc mechanism was presented. Wear resistance indicators of unfilled polyamides PA6, PA66 and composites based on polyamide PA6+30GF, PA6+30CF, PA6+MoS2, PA6 and oil coupled with steel C45 are determined. They, as polymeric materials with the property of self-lubrication, they are often used in metal-polymer dry friction bearings. Based on them, wear resistance characteristics of these polymeric materials at sliding friction are established. They are used as basic parameters for developed by authors mathematical model of material wear kinetics at sliding friction and analytical research method of metal-polymer sliding bearings research. For comparative assessment of wear resistance of the investigated polymeric materials, their wear resistance diagrams are constructed. Thef show the functional dependence of wear resistance on specific friction forces. It is proved that the wear resistance of materials nonlinearly depends on specific pressure, i.e., the specific friction forces. Qualitative and quantitative influence of the type and structure of fillers (which improve the tribological properties of the base polymer PA6) on their wear resistance has been established. The forecast estimation of durability of metal polymer bearings made of the specified polyamides by the author's method of calculation taking into account their various wear resistance, characteristics of elasticity and conditions of dry friction is carried out. The research results are presented graphically, which facilitates their understanding and analyses.
Źródło:
Advances in Science and Technology. Research Journal; 2023, 17, 2; 258--267
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Water Absorption on Tribological Properties of Thermoplastics Matrix Composites Reinforced with Glass Fibres
Autorzy:
Walczak, Mariusz
Szala, Mirosław
Pieniak, Daniel
Powiązania:
https://bibliotekanauki.pl/articles/2172347.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
sliding wear
tribology
friction coefficient
water absorption
polymer composites
glass fibres
wear rate
polyamide
Opis:
The present work investigated the water absorption of thermoplastic matrix composites and their effect on tribological behaviour. Four thermoplastic composites were researched based on Polyamide 6 and Polyamide 66 matrix reinforced with glass fibres. The composites fabricated using the injection moulding technique were immersed in distilled water at room temperature for a water absorption test for 14 days. Dry sliding wear was conducted using a pin-on-disc trbiotester. The coefficient of friction (COF) and the wear rate (K) was determined. The sliding trace was analyzed using a scanning electron microscope (SEM) to reveal the sliding wear mechanism of composites. Studies have shown that polyamide PA6 based composites are less prone to absorb water than PA66 matrix. In addition, the composites richer in fibreglass exhibit lower water absorption. Tribological results indicated that polymer composites showed higher COF and K after water absorption testing. Mean COF and K were in the range of 0.071÷0.321 and 2.51∙10-6÷1.81∙10-4 mm3N-1m-1, respectively. Wear traces SEM analysis revealed that untreated samples are characterized by less intense abrasive and adhesive wear mode than the hydrated polymers. Besides, the degradation process took place primarily at the polymer matrix-fibreglass interfaces.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 2; 232--239
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies