Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Silicon carbide" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Experimental investigation to study the viscosity and dispersion of conductive and non-conductive nanopowders’ blended dielectrics
Autorzy:
Santarao, K.
Prasad, C. L. V. R. S. V.
Swami Naidu, G.
Powiązania:
https://bibliotekanauki.pl/articles/102844.pdf
Data publikacji:
2017
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
nanofluid
viscosity
dispersion
sonication
silicon carbide nano powder
boric acid nano powder
Opis:
Nano fluids are nanotechnology-based colloidal dispersions engineered by stably suspending nanoparticles. The characteristics of nano fluids such as thermal and electrical conductivities, viscosity, specific heat, dispersion etc. were studied and analyzed by earlier researches at different particle concentrations with different nano fluids. It was established that nano fluids have a significant impact on the process due the improvised characteristics. Nano fluid viscosity and dispersion deserve the same attention as thermal conductivity in cases of nano dielectric fluids that are used in EDM as they influence the MRR. In this work, The viscosity and dispersion of the conductive and nonconductive Nano powders blended dielectrics are investigated as a function of volume fraction so as to evaluate the behavior of these nano fluids at different particle volume concentrations. Kerosene and deionized water based nano fluids blended with conductive (SiC) and non-conductive (boric acid) Nano particles are selected for the current study. It is observed that as the percentage volume fraction of nano particles (both SiC and boric acid) increased, the viscosity was found increasing when blended with DI water. But the viscosity behavior with kerosene blended with SiC and boric acid is not same. The existing experimental results about the nano fluids viscosity shows clearly that viscosity have a specific trend in variation with an increase of volume concentration. Boric acid blended with DIW and kerosene shows similar trend in dispersion. However, in case of SiC blended with DIW and kerosene showed some contradictory results giving scope for further investigation. The outcome of these experimental investigations will augment the works that are going on in studying its influence on MRR in EDM processes using nano blended dielectric medium.
Źródło:
Advances in Science and Technology. Research Journal; 2017, 11, 1; 154-160
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Volume Percentage of Reinforcement on the Microstructure and Mechanical Properties of an Al6061-T6/SiC Surface Composite Fabricated Through Friction Stir Processing
Autorzy:
Ansari, Abdul Jabbar
Anas, Mohd
Powiązania:
https://bibliotekanauki.pl/articles/2201914.pdf
Data publikacji:
2023
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
friction stir processing
AMMCs
aluminium metal matrix composite
silicon carbide
microstructure
surface composites
composite material
Opis:
In this research, aluminium metal matrix composites (AMMCs) have been manufactured through friction stir processing (FSP) by reinforcing nano-sized SiC particles in an Al6061-T6 alloy. The consequences of the volume percentage of reinforced SiC particles on mechanical properties and microstructural features were analyzed for the developed AMMCs. Microstructural evaluation of a cross-section of a friction stir processed (FSPed) sample has been conducted through Electron backscatter diffraction (EBSD) Energy dispersive spectroscopy (EDS) and a scanning electron microscope (SEM) technique. Microhardness tests were conducted athwart the cross section of FSPed specimen to obtain microhardness feature. A tensile test of FSPed samples has been conducted on a universal testing machine (UTM). Homogeneous distributions of SiC particles were found in the stir zone without any consolidation of particles. The size of the reinforcement particles was decreased slightly by increasing the volume fraction. It has been found that increasing the volume fraction of SiC particles, enhance the tensile strength and microhardness, but decreases the ductility of the aluminium. The maximum ultimate tensile strength (UTS) and microhardness were obtained as 390 MPa and 150.71 HV, respectively, at 12% volume percentage of reinforcement particles. UTS and microhardness of the FSPed Al/SiC have been improved by 38.29% and 59.48% respectively as compared to Al6061-T6. The brittle nature of the FSPed Al/SiC has increased due to a rise in the volume fraction of nanosized SiC particles, which causes a decrease in ductility.
Źródło:
Advances in Science and Technology. Research Journal; 2023, 17, 2; 247--257
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives
Autorzy:
Szala, Mirosław
Szafran, Michał
Macek, Wojciech
Marchenko, Stanislav
Hejwowski, Tadeusz
Powiązania:
https://bibliotekanauki.pl/articles/103045.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
abrasion
wear resistance
dry sand-rubber wheel test
garnet
aluminum oxide
silicon carbide
steel
hardness
microstructure
odporność na ścieranie
test koła suchy piasek-guma
granat
tlenek glinu
węglik krzemu
stal
twardość
mikrostruktura
Opis:
The steel presents a wide field of application. The abrasive wear resistance of steel relies mainly on the microstructure, hardness as well as on the abrasive material properties. Moreover, the selection of a abrasion-resistant grade of steel still seems to be a crucial and unsolved problem, especially due to the fact that the actual operating conditions can be affected by the presence of different abrasive materials. The aim of this work was to determine the effect of different abrasive grit materials i.e. garnet, corundum and carborundum on the abrasive wear result of a commonly used in industry practice steels i.e. S235, S355, C45, AISI 304 and Hardox 500. The microstructure of the steel was investigated using light optical microscopy. Moreover, hardness was measured with Vickers hardness tester. Additionally, the size and morphology of the abrasive materials were characterized. The abrasion tests were conducted with the usage of T-07 tribotester (dry sand rubber wheel). The results demonstrate that the hardness and structure of steels and hardness of abrasive grids influenced the wear results. The abrasive wear behavior of steels was dominated by microscratching and microcutting wear mechanisms. The highest mass loss was obtained for garnet, corundum, and carborundum, respectively. The usage of various abrasives results in different abrasion resistance for each tested steel grade. The AISI 304 austenitic stainless steel presents an outstanding abrasive wear resistance while usage of corundum and Hardox 500 while using a garnet as abrasive material. The C45 carbon steel was less resistant than AISI 304 for all three examined abrasives. The lowest resistance to wear in garnet and carborundum was obtained for the S235JR and S355J2 ferritic-perlitic carbon steels and in corundum for Hardox 500 which has tempered martensitic structure.
Źródło:
Advances in Science and Technology. Research Journal; 2019, 13, 4; 151-161
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies