Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Garbacz, Łukasz" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
UV Degradation Influence on the Selected Physical Properties of Extruded PVC/Ceramic Composites
Autorzy:
Tor-Świątek, Aneta
Garbacz, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/2201717.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
composites
polymer
ceramic
UV degradation
extrusion
Opis:
This paper presents a study of PVC-ceramic composites obtained by twin-screw extrusion. Properties such as colour, wettability, tensile strength, elongation at break and impact tensile strength were studied. Moreover, the composite samples were subjected to UV degradation process and the influence of the composite composition therefore the degradation process on the mentioned properties has been determined. The study showed the dependence of the ceramic content in the material and its granulation on the individual properties. The research showed a significant influence of degradation on the colour and wettability of samples containing ceramic filler with granulation 0.25-0.5 mm, and in the case of tests of mechanical properties, this influence is the greatest for samples with filler with grain size 0.5-1.25 mm. Additionally, the aging process significantly influenced obtained results.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 3; 282--294
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Influence of the Aging Process on the Change of Selected Strength Properties of Polypropylene Compositions with Mineral Fillers
Autorzy:
Garbacz, Łukasz
Klepka, Tomasz
Longwic, Filip
Powiązania:
https://bibliotekanauki.pl/articles/2024036.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
zeolite
accelerated aging
strength properties
polymer compositions
polypropylene
fly ash
gypsum powder
Opis:
The goal is to understand the influence of minerals fillers on the course and performance of process of injection molding polypropylene compounds as well as on the mechanical properties of the obtained products. Three types of mineral fillers, derived from post-production waste, were used for testing. It was aluminosilicate (zeolite), fly ash and gypsum powder, all in powder form. The minerals fillers were introduced into the tested PP in a mechanical mixing process prior to the processing. During the injection molding process, inorganic fillers are subject to the same steps as plastic processing, compression, homogenization, transport. Organic fillers used in the injection process were introduced into the processed PP in the amount of 30% by weight. The test stand consists of a screw injection molding machine, Arburg AllRounder 320C. The research on the structure of manufactured materials, mechanical strength, impact resistance and hardness are presented. The laboratory tests of accelerated aging were conducted using an aging chamber. The aging temperature in the heat chamber was set to even amount of 63 oC and irradiance 0,51 W/m2. According to the standard, the aging time has been applied accordingly: 120, 240, 360 h, which conform to degradation at room temperature for 4 month, 8 month and one year. It was found that the type of mineral fillers used did not have a significant influence on the hardness of the surface of the moldings. The changes in hardness shown in the figures are primarily influenced by the properties and type of polymers used during the injection process. During the tests, differences in the mechanical strength of composites for injection molded parts made of PP with mineral fillers were observed. Filling PP with zeolite in the tested value causes a decrease in mechanical strength by an average of 10% from 24 to 21.6 MPa. Different mechanical interactions are shown by flying ash and gypsum powder fillers, increasing mechanical resistance of the composition. Flying ash increases mechanical strength by 30% on average, from 24 to 31.2 MPa. In case of gypsum powder application the resistance of PP composition increases analogically, but on average 20 %, to 29,5 MPa.
Źródło:
Advances in Science and Technology. Research Journal; 2021, 15, 2; 65-74
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Effect of Ageing on Selected Properties of Polylactide Modified with Blowing Agents
Autorzy:
Głogowska, Karolina
Majewski, Łukasz
Garbacz, Tomasz
Tor-Świątek, Aneta
Powiązania:
https://bibliotekanauki.pl/articles/102787.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
injection molding
ageing of polymers
polylactide (PLA)
biodegradable polymers
blowing agents
formowanie wtryskowe
starzenie polimerów
polilaktyd (PLA)
polimery biodegradowalne
środki porotwórcze
Opis:
The modification of processing and functional properties of polymeric materials is widely used in polymer processing. The current progress in this field involves the introduction of new ways of modifying polymers, often by changing their structure from homogeneous to porous. As a result, these polymers have lower density, and thus modified processing and functional properties. The paper presents the results of a study on the selected properties of the injection-molded specimens of polylactide (PLA) modified with blowing agents, before and after thermal ageing. Blowing agents with exothermic (Hydrocerol 530) and endothermic decomposition (Hydrocerol ITP-810, Expancel 951 MB 120 and LyCell F-017) were used. The mass content of the blowing agents was changed in the range from 0.5% to 3%. The study involved examination of the changes in properties such as Young’s modulus, tensile strength, tensile stress, strain at maximum tensile stress, Vicat softening temperature and impact strength depending on the mass content and type of blowing agent before and after the ageing process.
Źródło:
Advances in Science and Technology. Research Journal; 2019, 13, 4; 204-213
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies